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Chapter 1

Introduction

1.1 Qutline

Control of air contaminants is a crucial factor in the safety considerations
of crewed space flight. Indoor air quality needs to be closely monitored during long
range missions such as a Mars mission, and also on large complex space structures
such as the International Space Station. This work mainly pertains to the detection
and simulation of air contaminants in the space station, though much of the work is
easily extended to buildings, and issues of ventilation systems.

Here we propose a method with which to track the presence of contaminants
using an accurate physical model, and also develop a robust procedure that would
raise alarms when certain tolerance levels are exceeded. A part of this research
concerns the modeling of air flow inside a spacecraft, and the consequent dispersal
pattern of contaminants. Our objective is to also monitor the contaminants on-line,
so we develop a state estimation procedure that makes use of the measurements
from a sensor system and determines an optimal estimate of the contamination in
the system as a function of time and space. The real-time optimal estimates in turn
are used to detect faults in the system and also offer diagnoses as to their sources.

This work is concerned with the monitoring of air contaminants aboard
future generation spacecraft and seeks to satisfy NASA’s requirements as outlined

in their Strategic Plan document (Technology Development Requirements, 1996).



Most of this work was undertaken to satisfy the requirements of NASA’s Advanced
Environmental Monitoring and Control Program, with a view to developing an in-
telligent monitoring system for Space Station missions. The current NASA Strategic
Plan has as one of its stated goals “to explore, use, and enable the development of

space for human enterprise”. The goal is to be accomplished in three time periods

¢ 1996-2002: Establish permanent preser.ce in low Earth orbit by constructing

and using the ISS,

e 2003-2009: Operate the ISS cost effectively, with a subgoal to “achieve ad-

vanced life support systems to close spacecraft air/water loops,” and,

e 2010-2020 and beyond: Conduct international human missions to planetary

bodies in our solar system.

Even though this work is targeted at future generation spacecraft and space sta-
tions, many of the specifications used in this werk pertain to the International Space
Station, scheduled for launch in late 1998. The International Space Station is a col-
laborative effort with participation by the goveraments of the United States, Canada,
Europe, Japan, and Russia. The configuration will include a Hab and a Lab Element,
two Nodes, and two International modules (the European Space Agency Attached
Pressurized Module and the Japanese Experiniental Module). Other relevant mis-
sions where this work applies include the manned missions to Mars, the Mars Short
Visit, the Mars Human -Tended Outpost, and <he Mars Permanent Outpost, where
astronauts are expected to spend up to 600 days, and where the luxury of returning
to earth for a cleanup in the case of a contaminaat leak does not exist. Contaminants
that are to be monitored include carbon dioxide, carbon monoxide, and volatile or-
ganics. According to NASA, primary chemica's of concern are nitrogen tetroxide,
monomethyl hydrazine, ammonia, and Halon 1301. Studies aboard the Mir Sta-
tion(Cole et al., 1996) have shown that about 45 compounds (32 target compounds

and 13 non-target compounds) were consistent:y detected in air samples that were



collected during the missions, though none of the compounds were present at toxic
levels. Still, contaminant monitoring remains an important focus area in ensuring
the safety of humans in space.

Major sources of contaminants in the space station include off-gassing of
cabin materials and hardware, use of utility chemicals, and metabolic waste products
of crew members. Minor sources of contaminants include electrical equipment, mi-
crobial metabolism, leakage during experiments using chemicals, leakage from envi-
ronmental or flight control systems, volatile food components, and reaction products
from the environmental control and life support systems. Table 1.1 lists some of the
substances being monitored and their sources aboard the spacecraft.

The National Research Council (National Research Council, 1984), in its
various studies, has prescribed (National Academy of Sciences, 1981) spacecraft max-
imum allowable concentrations (SMACs), which are not to be exceeded under any
circumstances (National Research Council, 1996). These concentrations are based
on studies that link contaminant concentrations to the impairment of normal human
activities.

The fault detection and diagnosis system is a synthesis of different math-
ematical procedures, which are functionally independent, but which come together
to provide an effective structure that serves the purpose of monitoring the presence

of airborne contaminants.

1.2 Space Station Environmental Control and Life Support System

In this section, the general layout of the International Space Station, and
some of the components of the Air revitalization system are described.

Future missions, especially the long range missions, will increasingly have
to be materially closed systems, since the cost of carrying spare oxygen would be
prohibitive. Future missions will also involve growing food, and the complexity of the

revitalization system will increase to account for many more possible contaminants.



Table 1.1: Some commonly monitored substances and their sources aboard spacecraft

(National Research Council, 1992)

Monitored substance

Spacecraft source

Oxygen

Carbon dioxide
Carbon monoxide
Nitrogen

Halon

1-Butanol

Diacetone alcohol

Ethanol

Ethyl benzene
Ethylene Glycol
Glutaraldehyde
Trichloroethylene
Xylene

Required component in cabin air
Required component in cabin air
Product of incomplete combustion

Inert component in air

Diffusion from the Shuttle to the Station
Off-gassing from flight hardware

and from human metabolism

Off-gassing from paint that is not totally cured
and from hardware off-gassing
Cleaner/disinfectant use

Off-gassing from nonmetallic materials
antifreeze and off-gassing

Cell-Tissue fixatives

Off-gassing

Off-gassing




In addition, NASA’s Advanced technology requirements outlines certain features
that must be included in future life support systems. Some of those features that

this work attempts to demonstrate include:

e Ambient air in the cabin must be monitored at selected locations, every 15

seconds, for the species O2, CO2, and CO.

e Toxicity of air must be reported in terms of specific major and trace species

concentrations and their rates of rise.

e A computer model shall be available to predict the behavior and the contami-
nation removal capabilities for contaminants that could suddenly be released
into the atmosphere. The model must be experimentally verified and be ca-
pable of spatial resolution to the module level and temporal resolution to

0.5 hour.

e major air components shall be monitored on a near-continuous basis in the

habitat atmosphere

The Environmental Control and Life Support system is divided into seven
major subsystems, the temperature and humidity control (THC), atmosphere control
and supply (ACS), atmosphere revitalization (AR), fire detection and suppression
(FRS), water recovery and management (WRM), waste management (WM), and the
Vacuum System (VS).

Their functions include (Reuter, 1998) :

e Atmosphere Revitalization:

* Control and disposal of carbon dioxide
* Control of airborne trace contaminants

* Oxygen (O2) supply via generation



* Atmospheric monitoring of primary constituents, including Oy, CO,,

nitrogen (N2), hydrogen (H;), methane (CHy), and water vapor

* Airborne particulate and microbial control
e Temperature and Humidity Control

* Cabin air temperature and humidity control

* Equipment air cooling

* Inter- and intra-module ventilation for crew comfort and station level
control of Oy, CO», and trace contaminants

o Atmosphere Control and Supply

* Total pressure and O partial pressure control
* Total pressure monitoring and menitoring of loss of pressure

* Stored gaseous N2 and O; supply and replenishment
e Fire Detection and Suppression

* Smoke detection

* Fire extinguishment

Waste Recovery and Management

* Potable and hygienic water suppl:-

* Waste water and urine water collection, recovery, and disposal

Waste Management:
* Urine/fecal collection and recover:

Vacuum System

* Vacuum venting and maintenance for payload support



Some of the air and water quality requirements which are to be maintained
in the ISS are shown in Table 1.2.

A test of the Life Support System was carried out in the Johnson Space
Center’s Integrated Life Support System Test facility, in which a four-member crew
spent thirty continuous days in a closed chamber. All test objectives were accom-

plished (Lunar-Mars, 1997), and no SMACs were violated.

1.3 Previous work

Space environment monitoring has been in place for as long as there have
been crewed missions, with the levels of sophistication changing with the complexity
and duration of the missions, and along with the developments in computational
and sensor technologies. Two computer models that represent the present genera-
tion of Space Environment monitoring models are the Trace Contaminant Control
Simulation (TCCS) (Perry, 1993) and the Computer Aided System Engineering and
Analysis (CASE/A) (CASE/A, 1990) modeling package. Both the packages model
the space station modules as well-stirred tanks, where each module is represented by
its average concentration. The CASE/A package is more flexible and user-friendly,
and provides a means for simulation of a number of interconnected well-stirred tanks.
Both the packages suffer from the limitation that stagnation points within the cabin,
and non-uniform forced convection patterns cannot be represented within the model.
A study of the inhalation risks aboard spacecraft (Todd et al., 1994), where the
Space Station was modeled as a series of well stirred chemical reactors, improved
on the lumped analysis by providing more information about spatial variations of
contaminants aboard spacecraft. A comprehensive study of the sensor system was
undertaken (Smith, 1996), which used a lumped system of modeling the transport
in order to optimize the sensor selection process.

The first significant shift away from lumped analysis in contaminant dis-

persal modeling was in the work of Skliar and Ramirez (Skliar and Ramirez, 1997a),
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where each cabin module was represented using a two dimensional mesh and a solu-
tion to the reaction-diffusion equation was obtained using a finite difference scheme.
This approach has the advantage of providing information in two spatial directions.

Blackwell (Blackwell, 1998) has proposed a a fault detection and location
procedure based on physical laws and modeling, analysis, and simulation. His work
is based on optimal control theory, and uses analytical redundancy for the detection
part, but the work does not specifically address the physics of the problem, and

merely lays out the structure for the procedure.

1.4 Salient characteristics of this research

This research seeks to build on the two-dimensional model developed by
Skliar (1996), and extend that work to three dimensions. It also seeks to use a more
rigorous computational fluid dynamics solution to the flow equations that what has
been used hitherto for this purpose, one that vastly reduces the modeling error. A
fault detection algorithm is implemented with the ability to distinguish between pro-
cess and sensor faults. The fault detection algorithm uses the concept of analytical
redundancy to detect the faults.

The final part of the research focuses on diagnosing the fault in the system,
primarily that of an unknown contaminant source in the cabin. This is an inverse
problem that is ill-posed and has no unique solution, so the attempt here will be
to obtain a satisfactory solution to a required degree of accuracy. To this end, an
Extended Implicit Kalman Filter is developed, which is an extension of the Implicit
Kalman Filter suitable for joint state and parameter estimation. The filter essentially
maintains the same structure as the original filter, and many of the algorithms
remain the same as before. The filter requires an initial guess for the location and
capacity of the unknown source, for which purpose we use pre-calculated sensitivity
matrices that contain information about the local variation in concentration for

perturbations throughout the cabin. The combination of these two techniques makes
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for an accurate and efficient algorithm for obtaining a solution to the inverse problem.
The proposed procedure for air contaminant monitoring is shown in Fig.
1.1. The same procedure can be applied for a variety of substances,, and some

algorithms can even be used to monitor air pressure and some other parameters.

1.5 Outline of Report

This report is organized as follows. Chapter 2 discusses the flow modeling
work that we performed in order to simulate the air flow aboard the International
Space Station, and Chapter 3 describes the mathematical modeling of the contam-
inant dispersal process along with its numerical solution, and sample profiles that
were obtained. The State estimation procedure is discussed in Chapter 4, and the
use of the State Estimation Procedure for fault detection is described in Chapter 5.
Chapter 6 contains the discussion of the fault diagnosis algorithms that are proposed,
and finally Chapter 7 presents the conclusions and the significant contributions of

this research.
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( Model solution )
Implicit Kalman Filter )4___‘ LS

*State Estimate

( Fault Detection )
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Figure 1.1: Air contaminant monitoring system




Chapter 2

Indoor air flow

2.1 Literature review

Air flows inside enclosures have been a subject of active interest within the
building systems community. Computational fluid dynamics (CFD) has been used
for predicting room air movement since the s:venties. There even exists a public
domain software (Kurabuchi et al., 1990; Said et al., 1995) called EXACTS3, which
is a three dimensional finite difference computer program for simulating buoyant
turbulent airflow within buildings. In recent vears, much effort has been made to
enhance CFD as a reliable tool for the evaluation of air flows. CFD has been used
in studying clean room air-flows (Kuehn, 19¢8; Yamamoto et al., 1988) because
of the need to keep the clean room free of particles and particulates, and air flow
becomes a critical parameter in such cases. Space application in the context of
contaminant dispersion is very similar in scope to clean room applications, though
there is little work reported in the literature that pertains to space applications.
Recently (Tam, 1998), an interesting study eva uated the application of CFD in the
software design of environmental control and life support systems, and found that
atmospheric conditions within the Space Statio 1 could be adequately modeled using
the Resource Utilization Planning and System Modeling (RUPSM) scheme.

Most of the work in the area has remained computational, though a few

validating experimental results also exist in the literature. The International Energy
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Agency, though a subsidiary research group, Annex 20, measured velocities, temper-
atures, and turbulence velocity scales in full scale rooms (Whittle and Clancy, 1991).
Canadian researchers (Barber et al., 1982) did studies on the correlation between the
velocity of the inlet jet and the floor velocity, and proposed a jet momentum number
that would measure the energy contained in the diffuser jet relative to the room air
volume. In this work, we use CFD to provide us with the information regarding the
flow which is then used as an input to the mathematical model for the diffusion and
for the procedure that estimates the current concentration of contaminants in the
cabin. This development marks an important step in our estimation procedure since
the accuracy of the procedure is largely dependent on the accuracy of the flow model
since most of the transport is occurring through convective diffusion.

A detailed knowledge of the flow field is required in order to ensure that
the ventilation system is performing adequately, and to provide information about
local variations in the concentration profile of the contaminants. Another advantage
in using CFD is that it enables the calculation of quantities like turbulence intensity
which have direct effects on the comfort level of people inside the cabin. CFD is an
inexpensive tool for such studies and has been used to study the effect of different
ventilation techniques (Gan, 1995) on thermal comfort in buildings. Research has
shown that lower turbulence intensities contribute to higher comfort levels (Zhang

et al., 1992).

2.2 Air Flow Modeling

We assume that the air flow is steady and incompressible, and solve the
three-dimensional Navier-Stokes equations for the appropriate boundary and initial
conditions. Air under atmospheric pressure and for the low velocity flows that are
characteristic of room air flows is expected to be incompressible, and we invoke the
steady state assumption because solving for transient cabin flows is computationally

too intensive to be used in a real-time operation. We tried simulating the air flow
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for both 2-D and 3-D cases. Earlier work used a two-dimensional flow field (Skliar
and Ramirez, 1997a) as an input to their state estimation procedure. In a significant
development in this work, we consider modeling the three-dimensional geometry of
the space station module. The 2-D case has the advantage of requiring far less
computational time, whereas it suffers from a lack of information about the third
dimension.

Air flows inside enclosures are usually turbulent, random, and highly recir-
culating (Zhang et al., 1992). In this work, we solve the equations for both laminar
and turbulent cases. The geometry chosen here follows experimental test used in
previous studies (Son and Barker, 1997) and accurately represents the US Space
Station Lab module. We used this geometry for our simulations in order to have an
experimental set of results to validate our simulations. The simulated cabin (Fig.
2.1) is 6 m long, 2 m wide, and 2 m high (approximately. 20’ X 7° X 7’). There
are two inlets and two outlets for the air. The Temperature and Humidity Control
(THC) is the primary air supply which supplies regulated air into the cabin and
is one of the primary subsystems in the Environmental Control and Life Support
Systems for the Space Station (see Son and Barker, 1993). The Intermodule ven-
tilation (IMV) airflow assemblies are used to iiterchange airflow between modules.
One would expect that the THC air is relativelv contaminant free since it is filtered,
whereas the IMV could have trace contaminants generated in other modules, both
routine contaminants and those released due to accidents.

The air-flow model is based on the ccntinuity equation, the Navier-Stokes
equation, thermal energy equation, and the concentration equation together with
the k — ¢ turbulence model equations, for the case of turbulent low. The k — € model
(Anderson et al., 1984; Whitaker, 1968) uses the kinetic energy of turbulence k&, and
its dissipation rate ¢ as the two scales. This introduces two additional transport

equations. In the k — € model, the turbulent viscosity u; also known as the eddy
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Figure 2.1: Sketch of the model cabin.
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viscosity is defined by the relation:
pe = cupk®/e (2.1)

where ¢, is an empirical constant, and p is the density of the fluid.

For a rectangular cabin geometry, the equations of continuity, momentum,
energy and mass for an incompressible flow are as follows. The symbols in the
equations are defined in the nomenclature section at the end of this thesis.

Continuity:

V-u=0 (2.2)

Momentum:
The momentum equation for the three co-ordinate directions is given below.

x-direction

d(pu) | (pu®)  O(puv)  B(puw) _
ot VTor oy T 6z - (2.3)

op 0 Ou 0, ,0v OJu d, ,0u dw
3z a—x(AV ‘u+ 2“6_1) + E® [ﬂ(a—x + 6‘_y)] + 5[#(5; + 5;)] +pfz

y-direction

Opv) | Bpuwv) | O(pv?)  Olpvw) _

ot Or Sy 0z (24)
0p 0, ,0v Ou 0 ov d, Oow Ov
“3 " oz uly, + By)] + ay()\v -u+ Zua—y) + a[ﬂ(gy' + 50+ ek
z-direction
2
d(pw) , Alpuw) | dpvw) , Blpu?) _ (25)

at Oz dy 0z

op 0, 0u Ow g, Ow v (7] Ow
3. 'a';[ﬂ(g“F Fe )] + By[u( % + 62)] +$(>\V'U+2ﬂ5)+ﬂfz
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Energy:

The energy equation is given below for the sake of completeness. The
Space Station environment is expected to be isothermal for the most part, and
minor temperatures would not affect the flow field much since buoyancy is not an

important factor under micro-gravity.

u? ) g, 0T g, oT o oT
PE(C + ':2“) = pg + 5;(’65;) + —a(ka—y) + E(kg)

_(@+Qg+?ﬂ)+)\(@+§9+8_w)2+
Ploz dy 0z dr OJy 0z

Oy @y B oy Ou D, Do u,
HR(5 )+ 25 + UG+ (G + 5 + (5, + 5) gt ]

2.3 Solving the Navier-Stokes equations

The equations were solved in a coupled manner using the Fluid Dynam-
ics Analysis Package (FIDAP Version 7.62)(FIDAP, 1993). A finite element mesh
grid was developed for the two-dimensional and the three-dimensional problems with
specified nodal boundary conditions. An eight-node brick was used as the basic finite
element for the purpose of discretization. The velocity components were approxi-
mated using trilinear interpolation functions within the elements. The pressure was
discretized in a piecewise continuous manner, with the pressure degree of freedom
associated with the element centroid. A segregated solver was used to solve the re-
sulting non-linear equations. The segregated solver decouples the equations for the
purpose of solution, and sequentially solves them, using the results of one equation
in the next, and so on. This increases the CPU time needed, but conserves memory,
and has been found to be very useful for large mesh sizes. A variety of boundary con-
ditions was triéd, though for the sake of conciseness, only two cases will be discussed
here. The Convergence criterion required the residuals of the equations (velocity

components and the pressure) to be below 0.0001. Most of the computations were
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performed on the SGI Power Challenge Array, in a parallel mode with either two
or three processors, available to us through the National Center for Supercomput-
ing Applications, Urbana-Champaign. The runs required varying times to converge,

approximately in the range of 60 CPU hours for each.

2.4 Flow field results

Case 1: Laminar Flow- high flow rate

The geometry has already been described. For this case, we used an IMV
with a duct velocity of 4.8 m/s and a THC with a velocity of 6.0 m/s. The cabin is
assumed to be isothermal. The ducts leading to the outlet are modeled using free
boundary conditions, i.e. the values of the velocities are allowed to float to satisfy
the Navier-Stokes equations. The no slip boundary condition was invoked at all the
walls. We assume that the flow is laminar, and that it is a steady flow field.

Figures 2.2 - 2.4 illustrate the flow profiles that we obtained. The contour
of the magnitude of the velocities and the velocity vectors themselves are depicted.
We show three horizontal slices of the box, one near the top and bottom, and one
halfway up the cabin to illustrate the variations. The slice near the bottom is mainly
dominated by the exit of the THC duct. Note that the flow leaves at an angle to
the duct due to the blast of air that blows in the x-direction. The slice near the
center clearly shows the profile near the inlet and outlet for the IMV ducts. The
flow spreads out throughout the room. The laminar case shows no recirculation cells.
The slice from the top of the cabin shows the ‘low entering the cabin, and the cells
formed as the jet curves downward.

Case 2: Turbulent Flow- high flow rate

Turbulence, in a sense, is still an ursolved problem. The presence of a
length and a time scale much smaller than the physical problem presents a scenario
where the exact solution to equations cannot be obtained. In addition, for room and

cabin flows, it is difficult to predict the onset of turbulence. A statistical approach
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Figure 2.2: Speed Contour and Velocity Vector for the bottom slice under laminar
flow conditions for a THC flow of 6.0 ms~! and an IMV flow of 4.8ms™!. The speed
and velocity are expressed in the units of ms™!.
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Figure 2.3: Speed Contour and Velocity Vector for the middle slice under laminar
flow conditions for a THC flow of 6.0 ms~! and an IMV flow of 4.8ms~!. The speed
and velocity are expressed in the units of ms™!.
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Figure 2.4: Speed Contour and Velocity Vector for the top slice under laminar flow

conditions for a THC flow of 6.0 ms~! and an IMV flow of 4.8ms™!. The speed and

velocity are expressed in the units of ms™!.
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is usually used, and the equations are averaged over a time scale that is long com-
pared to that of turbulent motion. The resulting averaged equations then describe
the distribution of the mean velocity, pressure, temperature and the other quanti-
ties of interest. Detailed derivations of the equations can be found in any advanced
book on fluid motion (Anderson et al.,, 1984). We use the two-equation model,
briefly touched upon earlier. For isothermal flow with no mass transfer, the recom-
mended set of model parameters were used for these empirical constants defined in

the nomenclature section.

¢y =0.09,04 =1.00,0, = 1.30,c; = 1.44,c2 = 1.92 (2.7)

Figures (2.5-2.7) are graphical representations of the turbulent flow simulations.
Case 3: Laminar Flow -Low flow rate
For the same geometry as before, the flow rates were decreased, and the
steady state flow profiles were recalculated for an IMV flow rate of 0.15 m/s and a
THC flow rate of 0.3m/s. All other conditions were maintained at previous levels.
The profiles are shown in Fig. 2.8-2.10.

Case 4: Turbulent Flow -Low flow rate

The low velocity flow field calculation was repeated for turbulent flow. Fig-
ures 2.11-2.13 show the contours for the profiles that were obtained.

No major differences were noticed in the flow profiles obtained for high and
low velocity duct flows. The patterns of flow essentially remained the same. A more
thorough study of inlet velocities and their eff:ct on cabin air flows is in order but
beyond the scope of this work. The turbulen' flow profiles closely resemble those
obtained previously in experiments (Son and Barker, 1997) in the Space Station
simulator. The differences can be attributed to the minor differences in the geometry
in the region of the hatches connecting the modules, and the roundedness of their

hatches. The existence of recirculation cells is the significant difference between the
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Figure 2.5: Speed Contour and Velocity Vector for the bottom slice under turbulent
flow conditions for a THC flow of 6.0 ms™! and an IMV flow of 4.8ms™!. The speed
and velocity are expressed in the units of ms~?.



Three-dimensional. Turbulent. New Outflow conditions

SPEED

CONTQUR PLOT

LEGEND

.7184E+QC

G

0. ¢
-- 0.6537E+00

0

E PRINTOUT

MINIMUM
0.00000E+00
MAXTIMUM
0.10033E+01

PLANE COEFF.S
A 0.000E+00
B 0.000E+00
C 0.100E+01
D -.200E+Q]1

T
VX 0.100E+01
VY 0.100E+01
VZ 0.100E+01
ANG 0.000E+00

FIDAP 7.60
31 Mar 97
11:32:45

Three-dimensional. Turbulent. New Outflow conditions

VELOCITY

VECTOR PLOT

SCALE FACTOR
0.1000E+03
REFER. VECTOR
—=0.5016E+00
MAX.VEC.PLOT'D
0.7328E+00
AT NODE 0
COLOR CODE:
VELOCITY

.B92E+00

[=lelelelololelo)

PLANE COEFF.S
A 0.000E+00
B 0.000E+00
C 0.100E+01

—.200E+01

VIEW DIRECTION
VX 0.100E+01
vy 0.100E+01
VvZ 0.100E+01
ANG _0.000E+00

FIDAP 7.60
31 Mar 97

11:32:45

24

Figure 2.6: Speed Contour and Velocity Vector for the middle slice under turbulent
flow conditions for a THC flow of 6.0 ms~! and an IMV flow of 4.8ms™!. The speed

and velocity are expressed in the units of ms—!.
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Figure 2.7: Speed Contour and Velocity Vector for the top slice under turbulent flow
conditions for a THC flow of 6.0 ms™! and an IMV flow of 4.8ms™!. The speed and
velocity are expressed in the units of ms~1L.
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Table 2.1: Normal mesh-errors for the velocity components and the pressure equa-
tions.

| Degree of Freedom | RESIDUE |

u 0.72617E-03
v 0.10399E-02
w 0.21082E-03
p 0.39848E-03

laminar and the turbulent profiles. We believe that the actual flow in the Space
Station is mostly turbulent, and the the profiles we obtain are characteristic of low-

velocity turbulence flows.

2.5 Mesh refinement studies

Numerical simulations are of course, subject to errors, and are closely re-
lated to the coarseness of the mesh used in the simulations. One common way of
validating CFD simulation results is to refine the mesh being used and noting that
there was no major change in the solution obtained for the same geometry, initial
and boundary conditions. Tables 2.1 and 2.2 show the error residuals for each of the
four equations, representing the velocities in the three co-ordinate directions and the
pressure. Results are shown for both a normal mesh and for a refined mesh (dou-
ble the number of mesh points). The results indicate that further refinement will
noi substantially change the overall flow profile. The flow profiles obtained in the
previous sections suggest that a refinement of the mesh near the flow inlets would

improve the accuracy of the solution near the inlets.

2.6 Complex flows

The flow in a cabin under operation is likely to be different from what we
obtain by simulating an empty cabin, as we have done until now. Humans in the

cabin and equipment are likely to cause more turbulence and recirculation cells. A
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Table 2.2: Refined mesh-errors for the velocity components and the pressure equa-
tions.

| Degree of Freedom ] RESIDUE J

u 0.12671E-02
v 0.14342E-02
w 0.10849E-02
p 0.71476E-03

detailed analysis of complex flows is out of scope of this work, but we attempt to
obtain some preliminary results on what flow fields look like with objects in the
cabin.

A set of simulations were carried out for the geometry shown in Fig. 2.14.
Speed contours for three horizontal slices are shown in Figs. 2.15-2.17. The turbu-
lence in the cabin was found to increase with the presence of an object, with more
dead zones. The number of recirculation cells has increased. The velocities did not

vary too much, due to the low velocity of the air flow.

2.7 Summary and Conclusions

Our objective in studying the air flow inside the cabin was to arrive at a
basic understanding of cabin flows aboard the Space Station, and to obtain a few
sample air flows that could be used as an input to our transport model, developed
in the next Chapter. The flow profiles are very important to the transport model
since most of the mass transfer in the cabin occurs as convective transport, and
the accuracy of the flow field will therefore largely control the accuracy of the final
transport model. Space Station flows are very poorly understood at present, and
considerable further work is needed, both simulation of flows using CFD techniques,

and experimental work which can validate those simulations.
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Chapter 3

Air contaminant dispersion modeling

3.1 Mathematical model

One of the goals of this work was the development of a complete three-
dimensional transport model for the air-borne contaminants. The essential structure
of the model is shown in Figure 3.1. Previous work used either the control-volume
approach, in which the cabin was modeled as a collection of well-mixed reactors
(National Academy of Sciences, 1981), or a space-averaged two-dimensional model
(Skliar and Ramirez, 1997a).

Nazaroff reports a study of the effects of indoor air pollutants in which the
indoor air was tagged with a non-reactive tracer and the decay of its concentration
was monitored. They also extended this work to the study of flows between rooms
using a combination of remote sensing and computed tomography techniques, which
yields accurate results for the dispersion of air pollutants.

In this section, we present our model o: the transport process, the discretiza-
tion scheme to convert the partial differential equations to discrete representations,
and discuss our solution scheme. The three-dimensional transport model developed
here essentially extends the two dimensional model of Skliar (1996).

Assuming a constant density of spacec: aft atmosphere and a constant molec-
ular diffusivity, Dy, the differential mass balance of the air-borne contaminant

(Bird et al., 1960) with concentration g results in the following fundamental three-
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Figure 3.1: Inputs and output from the air contaminant transport model
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dimensional convection-diffusion transport model

9
6—‘t’+u-vq=DMv2q+f (3.1)

where u is the bulk air velocity, and f is the function that describes the capacity
and location of contaminant sources and sinks. In this work, we are assuming that
the contaminant is passive, i.e. it is transported with air at the same velocity in the
field. In addition, we are assuming that the contaminant undergoes no chemical or
physical transformations during its transport.

Equation 3.1 is applicable to both laminar and turbulent flow. However,
in the case of turbulent flow, the velocity vector is extremely random, and so we
resort to using the time averaged equations instead. The idea is to average the
Fickian model over a time interval long enough for the integral of the instantaneous
fluctuations to become zero. For the case of turbulent flow, therefore, we treat both
the flow velocity and the concentration g as stochastic quantities. The transport
equation, for the case of turbulent flow is written as

97

§+ﬁ-Va=V2§,\7§+7 (3.2)

where the overbar indicates that they are time-averaged quantities.
The eddy diffusivity, Dps, which is tae diffusivity under turbulent condi-
tions, is a function of the flow field and is therefore not uniform throughout the

geometry.

3.2 Computer Implementation of tke three Dimensional Model

We solve the model Egs. 3.1 and 3.2 above using a simple finite differenc-
ing scheme. In this section, we discuss how we discretize the equations, and then
outline the solution technique used to solve the same equations. Since the flow field

is expected to be turbulent in most cases, this derivation will proceed under that
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assumption, and using the eddy diffusivity as the diffusivity coefficient. If laminar
conditions are found to prevail, the molecular diffusivity should be used, which is
independent of the flow field, and therefore is uniform throughout the cabin.

The diffusive terms are discretized using a second center difference scheme

and appear as

a aq q +17p)r — qnyP:T q W - q —1) )
e v v R G
d 9q Qnp+lr —Adnpr Gnp,;r — Gn,p-1
U d P 3 P —_ d P n,p T 34
ay ay n’lp+17r Ay2 n,p,T Ay‘z ( )
d ,0q npr+1 ~ Gnpr An.pr —4npr-1
5252 = dnp;rt1 Az2 —dnp;r Az2n - (3.5)

where Az, Ay ,Az are discretization steps along coordinates z,y, and z, d is the
discrete analog of the diffusivity and the subscript is used to specify a point on the
spatial mesh {(n,p,r) | n = I,N,p = 1,P,r = 1,R}. N,P, and R determine the
mesh size used in discretizing the cabin geometry.

The convective terms are discretized using the upwind differencing scheme
in order to eliminate any possible oscillatory effects in the solution. The convec-

tive terms for the East-West, South-North, and Up-Down directions are as follows.

East-West
E
qu _ qn,p,r - qf‘:‘,/p,r
Bz T Az (36)
where
E { dn,p,r if Un,p,r > 0,
Gnpr = )
Qn—l,p,r lf u"aP,T < 0’
w _ {Qn—l,p,r if ’u’n,P,T > 07
qn)p"‘ - .
Gnpr if uppr <O.
South-North
S N
20 q —-q
U = gt 2P (3.7)

Oy Ay
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Up-Down

where
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S Inp—1,r if Un,p,r > 01
Inpr = .
q"apﬂ' lf U-”I,P,T < O’
N n,p,r if Unpr >0,
qn1p1T = .
qnlp_lvr lf U’hpv" < O
U D
wog _ . InprInpr (3.8)
9z T A '
U q"-,P,T if wnaplr > 07
qﬂ,p," = -
Gnpr-1 if Wnpr <0,
D qn,p,r-1 if Wnpr > 0,
npr = .
qnip)r lf w-"hpv" < 0'

The application of the center difference approximation of the time derivative yields

the following discrete analog of the three dimensional transport model.

m+1
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m
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m m
qn;pyr — qn»P»T_l

qu,T'Fl — q;{?p,r —d + f'm+1 (3 9)
n,p,r A22 n,p,r .

+ dn r+1
Py AZ2

where f,’&;f 1 represents the value of the time dependent source function f evaluated
at the current time step, At is the time discretization step, and the superscript
m =0,1,2,... is used to identify an instance ¢ = (m + 1)At for which the solution

of the equation is sought.

3.2.1 Numerical solution of the transport model equations

Because of their poor stability properties, explicit difference methods are
rarely used to solve initial and boundary-value problems in two or more space dimen-
sions. The solution scheme used here is the classic Alternating Direction Implicit
scheme (ADI) (Douglas and Rachford, 1956; Douglas, 1962), which invokes the prop-
erty of operator splitting and converts the problem into a system of three tridiagonal
matrix equations, along lines parallel to the x, y and z co-ordinate directions, which
can be solvedv using the Thomas Algorithm (Godunov, 1959). Solving the three
tridiagonal equations yields a solution for the concentration at the next time step,
dm+1 Via the intermediate concentrations (both dummy variables), q* and q**. The
convective operators are discretized using an upwind first order scheme, while the
diffusive terms are discretized using a second order center difference scheme. The
time operator is a simple forward difference term. The error is of O(Az, Ay, Az, At).

The like terms in (3.9) are collected to obtain the following equations for a

single spatial mesh point (n,p,r):

A
(_Tz—m)q = ( 2I+Ay+Az_At)Qm+fm

Ay r ko Ay L o+
(5 — 39" = —Fam g (3.10)
Az r ﬁ LT
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(3.11)

This system of equations is then represented as a single matrix equation in

terms of the State transition matrices, A, and As.

fm
A1Qmi1=A2Qm+ | 0 (3.12)
0
where
A
Qn=| q (3.13)
Qm
(== - &) 0 0
A ={AY}= £ (e - £) 0 (3.14)
0 & (G-
and
0 0 (Az/2+A,+A,—r/At)
Ar=AY=10 0 —A,/2 (3.15)

00 —A,/2

Az, Ay, and A, are finite differenc2 approximations used in the State
Transition matrices representing each of the spatial directions, where, for instance,

A is the approximation of
0—0 Ou

32 Moz~ 3z (3.16)

The solution to this set of equations for the appropriate initial and boundary condi-

tions discussed in the next section yields the concentration profiles for the cabins.
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3.2.2 Boundary conditions

Boundary conditions may be of the following kinds:

Boundary Condition of the first kind:

This is also known as a Dirichlet condition, and specifies a given concen-
tration along a boundary. This occurs commonly at inlet ducts where the flow is
coming in at a certain concentration of contaminant.

Boundary condition of the second kind:

This is also known as a Neumann condition, and specifies a concentration
derivative normal to the surface of the boundary, A wall, for example is represented
as a Neumann condition with the derivative of the concentration being set to zero.

Boundary condition of the third kind:

Also known as a Robbins condition, this specifies a combination of a concen-
tration and a flux at the boundary, and does not usually occur in cases of contaminant
dispersion, although it occurs commonly in convection diffusion when applied to heat
transfer problems.

Continuity boundary condition:

This is prescribed typically along interfaces, open boundaries, and at ducts
linking cabins, and for no barriers to mass-transfer, specifies that the flux must be
constant across a boundary. If a barrier exists, say, a membrane across which the
cabin air diffuses, a resistance to mass transfer may be used to specify the boundary
condition.

The different boundary conditions are used in this work in the following
cases: (Skliar, 1996; Roache, 1972)

The nature of the boundary must be described mathematically to com-
pletely specify the problem. This involves describing the volume of interest, as a
single volume or as a set of volumes glued to one another, and the appropriate bound-

ary conditions. The boundary condition can be of three main types, the Dirichlet
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boundary condition, where the concentration at a given boundary is specified, the
Neumann boundary condition, where the mass flux at the boundary is fixed, and the
mixed or Robbins condition, where a function of the flux (the derivative) and the
concentration is specified. In physical terms, the boundaries are encountered in the
following cases.

The wall: This is a no lux Neumann boundary condition. This also is the
default boundary condition for the model.

Duct In/Out: This would happen in the case of a window of some kind,
with significant convective flow in/out. The velocity at that mesh point is then
specified by the free stream velocity, and the diffusion is just as before. These are
inflow and outflow boundaries and the concentration is ether allowed to float (for
outflow ducts) or specified as a Dirichlet condition (for inflow ducts), as far the the
mesh is concerned. The value of the float is determined by the free-stream conditions
outside the volume and will have to be specified from time to time.

Open Hatch: This is similar to the duct, except that flows are ignored.

Membrane wall: This boundary is treated like an interior point, with the
velocity set to the flow velocity determined by the membrane, and the diffusivity is
changed to the value dictated by the membrane.

Removal device wall: This is a specic1 case, and allows for a boundary to
exist within the volume, with a diffusivity different from the rest of the volume,
or can act as a sink, which then would be treated a source term with a negative
capacity.

The solution to any partial differential equation (PDE) can depend on the
boundary conditions and the initial conditions applied to the PDE. It is therefore,
not surprising that the specification of the coraputational boundary condition, be-
sides affecting numerical stability, affects the accuracy of the PDE solution in a
significant manner. The intermediate values, ¢* and ¢** are not necessarily approx-

imations to the value at the end of the iteration. As a result, particularly for high
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order accuracy methods, the boundary conditions for the intermediate sweeps must
be obtained in terms of the boundary values at ¢ = nk and t = (n + 1)k. For
boundary conditions independent of time (eg. Dirichlet conditions), the conditions

are straightforward(LeVeque, 1985)

¢ =q*=g"" (3.17)

where g™ ! is the specified concentration at the boundary. For Neumann conditions

the relations are:

¢ = ggm +(1 =749 - wﬁ)(%g’"“ = —ggm) (3.18)
¢ = gg’” +(1- vAf)(%g"‘“ - —gg"‘) (3.19)

where g™*! is the specified flux boundary condition, and v = 8 = Az/2.

The Neumann boundary also requires the calculation of the flux at the
boundary. At the boundary, however, a center difference cannot be used to compute
the first derivative since there are no neighbor mesh points in one of the directions
( say, to the left of a point on the x boundary). This problem is circumvented
by using a reflective boundary condition (where the domain is extended left of the
actual boundary). One-sided differences could also be used. In this work, we use the

reflective boundary condition to model the boundaries.

3.3 Model Testing

We first ran simulations of the contaminant dispersal using cases where we
expected a known pattern of dispersal to see if the model was performing satisfac-
torily. The model was therefore tested for stagnant cabins, and for cabins with air
flow, with two kinds of contaminant sources, puffs, which are instantaneous releases

of contaminant, and continuous streams of contaminant flow.
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Case 1: Stagnant Room — Source in the center.

In the first test case, the velocity vector was assumed to be identically
zero at all the node points. This is a useful test case, since we know a priori what
the model should predict: a gradual spread of the contaminant outwards, while
preserving the symmetry of the distribution. A point source was introduced at the
geometric center of the cabin, and the contaminant concentrations were observed for
subsequent time steps. A 31 x 31 x 31 mesh was used to discretize a model cabin
of size 7 x 7 x 7m, and Figure 3.2 shows the contours at grid point slices 1, 10, 15,
and 29 (in the z-direction) for time Steps 3,7,29, and 49. Note that the solution is
symmetric in all directions.

Case 2: Room with air flow — Source in the center.

Having tested a rather rudimentary test case, we now considered a case with
a fictitious wind field. A wind field with u = 0.Em/s,v = 0,w = 0 was used at all the
node points. This wind field again has the advantage that we can expect a certain
pattern in the solution. Again, we use a 31 x 31 x 31 mesh, with two ducts on either
side. Figure 3.3 shows the contours obtained for different time steps. Transport in
the x-direction is mainly via convection, and «liffusion in the y and z directions is
only molecular. One can observe that the convective transport is much faster than
the molecular transport. Consequently, we may conclude that the accuracy of the

flow field will largely control the accuracy of the transport model.

3.4 Contamination scenarios

We now proceed to test the working cf our model by simulating some test
cases. In this section, we use the wind field that we obtained in the sample cases
(Narayan and Ramirez, 1998b) to observe hov' contaminant dispersal occurs. We
consider two separate cases, both of which represent actual Space Station contami-
nant scenarios.

Case 1: Steady-State Contaminarion
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Figure 3.2: Contaminant concentration contours for a stagnaint room with a contin-
uous release of contaminant in the center of the cabin. The contours are shown for
4 horizontal slices per time step (left-right, top-down), at levels 0.07,0.7.1, and 1.91n
from the floor of the cabin at time-steps 3,7,19 and 49.
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3

Figure 3.3: Contaminant concentration Contours for a room with flow, with a uni-
form velocity of 0.5 ms~! shown at levels 0.07,(.7,1, and 1.9m from the floor of the
cabin at time-steps 3,11,45 and 99.
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This case attempts to mimic the routine operation of the Space Station
module. For this specific case, we are assuming a release of 20 mg of carbon dioxide
over the first two time steps(of 4.5s each). In addition, we have a steady input
of carbon dioxide in the inlet streams. The cabin has a residual carbon dioxide
concentration of 0.3 volume % for its initial condition. The THC air comes at a
concentration of 0.5 volume % and the IMV with a concentration of 0.71 volume %.
This would be realistic since the THC is treated , and we could assume that one of
the other modules has a great deal of astronaut activity, and thus the high carbon
dioxide level. The simulation was done for about 300 time steps (about 1350 s). By
this time, we observe a steady-state concentration distribution. Figure 3.4 shows the
contamination levels at four different slices in the cabin, at levels 0.067m, 0.67m, 1m,
and 1.87m from the floor of the cabin after about 1300 s. The origin, (0,0,0) refers
to the point in the cabin at the left bottom corner in Fig. 2.1. The surface plots of
the slices closer to the middle of the room show similar profiles, and the exits and
the consequent drop in concentration levels of the contaminant are clearly visible.
This is due to the strong blast (relative to the rest of the cabin) of wind removing
the contaminant through convective transport.

Case 2: Sudden Release of Carbon dioxide

Carbon dioxide may be used to extinguish a fire. A large release of carbon
dioxide then would occur over a small time frame, and we wish to monitor how the
contaminant levels gradually decrease. Figures 3.5 and 3.6 show the concentration
levels 90 and 1500 s after the release. The surface plots and contours are shown
at planar slices 0.067m, 0.67m, 1m, and 1.87m from the floor of the cabin. During
these 1500 s, more than 70% of the released carbon dioxide has been flushed out from
the room. Figure 3.5 shows the profiles 90 s after the release, which happened near
the bottom left corner of the cabin (0.27m,0.14m,0.17m). In this figure, substantial
amounts of the carbon dioxide are still present near the location of the occurrence,

although the levels drop off near the outlets. In Fig. 3.6, which shows the profiles
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Figure 3.4: Steady State Contamination CO, profiles for the cabin with an initial

carbon dioxide concentration of 0.3 volume %, an IMV inlet flow at 0.71 volume %,

and a THC concentration of 0.5 volume %. Th: concentration profiles are shown at

four levels, 0.067m (level = 1), 0.67m (level = 1)), 1m (level = 15), and 1.87m (level

= 28) above the floor of the cabin.
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1500 s after the release, we observe that the carbon dioxide is almost well-mixed with
only a slight bulge at the location of the release in the top slice. This accumulation
of carbon dioxide near the ceiling is a consequence of the low flow region at the top,
and because of the stagnation zone that exists near the ceiling. By this time, it is
the flow profile which largely decides the contamination concentration profile, which
is indicative of the fact that convective transport is the dominant mass transfer
mechanism. For a sample average flow velocity of 1.5 m/s, the mass transfer Peclet
number is 2 x 10°, which implies that convective transport dominates molecular
diffusion.

Note here that there is a significant variation in the concentrations across
the room, which might mean that lumped models of the cabin would be grossly
inaccurate. Also, there are regions of accumulation in the room. This could mean
that SMACs could be locally violated, even though the concentration averaged over
the entire cabin may be below the SMAC limit. The flow field is an important
parameter in the way contaminants spread through the cabin and needs to be closely

monitored.

3.5 Modeling of cleanup process

Crucial to the Advanced Environmental Monitoring process is the modeling
and monitoring of the contaminant removal processes. Removal processes range from
HEPA filters, molecular sieves, and adsorption packs to the use of the Sabatier and
the Bosch processes for the regeneration of carbon dioxide.

The approach used in this work is that all removal devices can be modeled
in two distinct ways; either as devices that remove a certain percentage of the con-
taminant and leave the rest in the medium, or as devices that remove almost all of
the contaminant leaving only a small residual concentration behind. The air that
passes through the removal device is then assumed to return to the main stream and

re-enter the module. An additional parameter is the amount of contaminant that
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0.6f

about 90 seconds after a sud-

den release of carbon dioxide at grid location (4,5,8) with an initial carbon dioxide

concentration of 0.3 volume %, an IMV inlet flow at 0.71 volume %, and a THC
concentration of 0.5 volume %. The concentration profiles are shown at four levels,

Figure 3.5: CO2 profiles at four different elevations,
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above the floor of the cabin.
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Figure 3.6: CO; profiles at four different elevations, about 1500 s after the sudden
release of carbon dioxide at (4,5,8) with an initial carbon dioxide concentration of
0.3 volume %, an IMV inlet flow at 0.71 volume %, and a THC concentration of 0.5
volume %. The concentration profiles are shown at four levels, 0.067m (level = 1),
0.67m (level = 10), 1m (level = 15), and 1.87m (level = 28) above the floor of the
cabin.
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Table 3.1: Sample parameters used for the removal devices

Capacity | Boundary-type | Removal Efficiency Name
100 1 (percentage ) 0.95 CO2 scrubber
50 2 (Dirichlet) 0.0004 adsorber

the removal device can safely accumulate before it stops functioning.

In this research, the removal of all substances is monitored by a subroutine
that calculates the flux of each substance at all the outlets, monitors their removal
based on the input parameters, and updates the new inlet concentration boundary
conditions. A sample simulation, with the sample parameters of Table 3.1 was carried
out using a cabin with the removal devices in place. A source of 60 mg/L was emitted
over a 10 second period, and the THC and IMYV inlets had concentrations of 0.0015
mg/L and 0.002 mg/L, respectively. The concentration profiles after 450 s are shown

in Figure 3.7.

This subroutine is flexible enough to model a variety of devices, including the Carbon
Dioxide Removal Assembly (CDRA) that is part of the current baseline technologies
in the Air Revitalization. The CDRA prototype tested(Barker et al., 1991) used a
carbon dioxide removal rate that was a function of the inlet carbon dioxide partial

pressure, PPcp, and was represented by the following equation:

Removalrate(lb/hr) = 0.1579 * PPcp,(mmHg) — 0.0348 (3.20)

The equation is valid for carbon dioxide partial pressures between 2.0 and 3.9 mm

Hg, and can be easily included in our removal : ubroutine.

3.6 Summary and Conclusions

In this Chapter, the transport model was developed and implemented for

air contaminant dispersal aboard spacecraft. Tle transport model uses the flow field
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calculated using methods described in Chapter 2 as an input along with the cabin
geometry and the fluid parameters, and predicts the dispersal of air contaminants as a
function of time. This transport model is a threz-dimensional model, an improvement
over previously developed lumped and two-dimensional models, which is shown to
be useful when there are wide fluctuations in the contaminant concentration in the
cabin such that local violations of the SMAC level can occur even when the average
across the cabin stays below the SMAC level. Convective transport was found to
dominate molecular diffusion, evidenced by a mass transfer Peclet number around 2
x 10°. The transport model accounts for sources of the contaminant, both in the inlet
flows and from inside the cabin, and is also extended to model the effect of removal
devices that are commonly used in the Space Station. The model is accurate for

monitoring purposes, and is also computationa ly suitable for real-time application.



Chapter 4

State estimation using Implicit Kalman filtering

4.1 Why estimate the state?

State estimation is necessary while monitoring any physical process because
there are always uncertainties—faults in the process under observation, errors in the
mathematical model that is assumed to adequately describe the given physical pro-
cess, and changes in parameters that can cause real concentrations to be different
from those predicted by the model. The objective of the filtering process is to arrive
at an estimate that is unbiased, i.e. has the smallest error in the least-square sense,
and which gives one an accurate picture of the actual system. The cost of sensors is
high, both in terms of the monetary expense, and on account of weight and electrical
power issues, which necessarily restricts the number of sensors that can be carried
aboard. This gives rise to the issues of placement and selection of sensors, which is
an area of active research (Smith, 1996). The estimation process is very crucial to
the fault detection and diagnosis process since the matrices and calculations used
in fault and diagnosis procedures are used to make inferences about if and where a
fault (contaminant leak) has occurred.

An identification process usually has at least three main ingredients:

e A priori knowledge in the form of a mathematical model about the unknown

system and the noise.

¢ A measurement system that provides discrete or continuous measurements
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of a subset of the state.
¢ A performance measure of the identification algorithm.

The state estimation procedure closely follows that proposed by Skliar and
Ramirez (Skliar and Ramirez, 1997b). The estimation problem, formulated simply
is as follows: Given a stochastic process that represents a dynamic system, we are
interested in knowing the value of z(k) for some fixed k, where z(k) is not directly
accessible to us for observation. We have a sequence of measurements that are
causally related to xz(k) by means of a measurement system M and measurement
data 2(z), and we wish to utilize these data to infer the value of z(k). We denote
the estimate of z(k) by Z(k) and define it to be some n-dimensional, vector-valued

function ¢, of the measurements, viz.,

&(k|5) = Plz(i),i = 1,...,] (4.1)

where k refers to the time when the estimation is made, j refers to the time until which
measurements are taken and used, and i is an index that refers to the measurement
signal being used. Crucial to the estimation p ‘ocess is the definition and notion of

the estimation error which is defined by the re.ation

Z(klj) = z(k) — 2(kl) (4.2)

Ideally, Z = 0 and the estimate is e>act. When this is not the case, we
assign a penalty for the incorrect estimate. Th s is done through a penalty or a loss
function L which has the following properties: (Meditch, 1969)

1. The loss function is a scalar-valued function of n variables.

2. L(Z = 0) = 0. There is no penalty if the estimate is exact.

3. L is a non-decreasing function of the distance of the error from the origin

in n-dimensional Euclidean space.
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4. The loss function is symmetric about the origin in the same n-dimensional

Euclidean space.

4.2 Implicit Kalman Filter

One of the classical methods of state estimation is the well established
Kalman ﬁlter.ing algorithm (Kalman, 1960; Kalman and Bucy, 1961). The Kalman
filter, which has many different implementations now, and which is widely used for
the purpose of state estimation for dynamic systems that have random perturbations,
is an unbiased and minimum error variance recursive algorithm to optimally estimate
the unknown state of a dynamic system from noisy data taken at discrete real-
time. In the Kalman filtering paradigm, the uncertainties of the model and the
measurements are represented by additive stochastic white noise.

In addition, the measurements, z(i) and the measurement errors €(i) are

assumed to possess the following properties:

(1) The measurement errors have a zero mean,

where E is the “expected value operator”. A zero mean error is different
from a random error in that a random error may have a non-zero expected
value, which is also known as a bias. Here, we are assuming that our sensors

are not biased in any particular direction.

(2) The measurement error has a constant variance, which does not change with

time or with any other parameter

(3) The errors are additive, i.e,

2(1) = z(7) + €(2)
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(4) The measurement errors are uncorrelated, i.e. for two measurement errors,

€(0) and (p),

cov(e(0), €(p)) = E{[e(0) — E(e(0))][c(p) — E(e(p))]} =0 foro#p (4.3)

The Implicit Kalman filter is one of the many alternative Kalman filters that
have been developed over the years, which are theoretically equivalent to the original
formulation, and which have been formulated for various desirable features (Carl-
son, 1990; Chin et al., 1995; Jordan, 1967) including enhanced numerical stability,
computational accuracy, reduced computational requirements or for implementation
using parallel computing (Jover and Kailath, 1986; Morf and Kailath, 1975; Paige
and Saunders, 1977; Roy et al., 1991). Many of these variations are also discussed
in textbooks (Chui and Chen, 1991) dealing with the topic of Kalman filtering. The
Implicit Kalman Filter was shown to be particularly efficient in treating descriptor
systems with sparse transformation matrices, an example of which is the convection-
diffusion equation that forms the core of our mathematical model for air contaminant
dispersion.

If we recast the model equations for th: transport model developed in Chap-

ter 3 and include the additive noise, the modzl can be written as a single matrix

equation
fm C(m)
AlQm+1 = A2Qm + 0 + 0o Wim (4-4)
0 0
where
qn

am
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C(m) represents the stochastic disturbance transition matrix that acts upon wy,
which represents a stochastic disturbance that is an uncorrelated Gaussian white

sequence with a zero mean and

EWimwin']=Q (4.6)

Q is a diagonal matrix that represents the model noise, and is closely tied to the
uncertainty surrounding the mathematical model for our physical process. A highly
accurate model would have low values for its Q, and one that does not represent the

physical process too accurately would have high values for its Q.

(=5= - &) 0 0
A, ={AY}= L (TR — £ 0 (4.7)
0 s G )
and
0 0 (A/2+A,+A,—1/At)
A,=AY=|0 o ~A,/2 (4.8)
00 —A./2
and
Zm+1 = | 0 0 H(m+1) | Qm+1 + Vmy (4.9)

Vm+1 is an uncorrelated Gaussian white noise sequence that represents the mea-
surement noise with a covariance represented by R. The R matrix is a diagonal
matrix that contains information about the uncertainty surrounding the measure-
ments. Lower values for R indicate more accurate sensors. The estimation of the
contaminant concentration is determined from the sequential solution to the follow-

ing tridiagonal equations:
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Ax r * A:c r |
(——2——Kt)q = (2 +Ay+Az’"E)qm+fm (410)

+L1(z2 — H1 9 p1im)
A, ro .. A T

_7 - _A_tjq = —qu«m - thql‘l + L2[Z - H1§m+1|m] (411)
A r A r .. -
(-Tz _ Kg)q’"‘H — —fqm e ;g + L3[Z - HlYm+1lm] (412)

where the predicted estimation of the auxiliary variable y = A4,Q is given by the

following equation:

AP £
Imitim = | AR |@Gmm+| 0 |. (4.13)
A 0

The superscripts in the matrices A3, A%23, and A3? refer to the row and column
partitions of the Ao State transition matrix.

Note that the Eq. 4.10-4.12 are identical in structure to the model equations
in 3.11, the only difference being the addition of the last term, which is the effect of
the filter on the equations.

The modified measurement matrix H; = {H,;} is calculated using the

following equation:

H;; H;; Hj; ] A= [ 0 0 H ] ) (4.14)

which is equivalent to solving the following equ ations:

H;3A3 H, (4.15)

HjpA#Z = —H;3A%,
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HllA}l = —leA%l.

The Implicit Kalman Gain, a matrix that multiples the estimated error residual is

given by the equation

L1 =Py HIHPY | HI +R(m+1)]"! (4.16)
where Pi’n +jm is the predicted error covariance matrix given by the equa-

tion

AP? A%ST AP? A§3T AJ3P? AgsT-

mim mim m|m
+CQcCT
Pg’””m: 234 13T A 23pa 23T 4 23pg 33T (4.17)
APPY AT APPL APT APPY A3

_Agapq A%3T Agqu A§3T A§3Pq A%3T

mim mlm m|m i

The actual estimation error covariance matrix, PY i t1jm+1 is then calcu-

lated from the predicted error covariance matrix using the relation
PYs1mar = [T = L HaJPY o 1y, (4.18)

The error covariance matrices are measures of the uncertainty inherent in the com-

puted quantities.

Q

The error covariance in the state, Pm+1|m+

; Which is the uncertainty asso-

ciated with the computed concentration is determined from the equation
= Q T
Pym+1|m+l = AIPm+1|m+1A1 (4.19)

The solution to the last equation is reduced to a sequential solution of the

following six tridiagonal equations:
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Au[Pm+1|m+1]uA}1T = [P} +1|m+1]1 (4.20)
ALY ) PATT = [Pl - ALY AT,

AH[Pm+1|m+l]13A?3T — [Pm+1]m+1]13 Au[PmHlmH]le:imT
A22[Pm+l]m+l]22A%2T _ [Pm+1|m+l]22 A21[Pm+l|m+1]llA%1T_

A21[Pm+1|m+1]12A22T [Am[Pm+1|m+1]12A22T]T’
A22[P +1[m+1]23A33T _ [Pgn+1|m+1] A1 [Pm+l|m+1]l2A?2T_

APPY s PAT - ADPY 1RATT
ALY i [PALT = Ph [ — ATIPDy TPATT

ABQ[Pan+1|m+1]23A?3T [A32[Pm+1|m+1]23A%3T]T
where [Pm+1|m+1]33 = P:In+1|m+l‘

We can now formulate the algorithm of the estimation of the contaminant
concentration qm,,+1 based on the measurement data and the transport model.

1. Compute the predicted estimate of the concentration, Ym+1jm by prop-
agating the concentration at the previous time step, @y, according to Eq. 4.13.

2. Successively solve three tridiagonal matrix equations for the modified
measurement matrix Hj.

3. Solve the tridiagonal model equations with the new perturbation to
obtain the optimal estimate Quy1jm41-

The calculation of the gain L, 41 of the Implicit Kalman Filter follows the
following algorithm:

1. Calculate PY, according to Eq. 4.17.

m+1|lm

2. Calculate the Implicit Kalman filter gain from Eq. 4.16.

3. Calculate PY , according to Eq. 4.18.

m+1lm+
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4. The final step is to initiate the gain calculation for the next time step,
for which one sequentially solves Eq. 4.21. This is by far the most time consuming
step. The updating step can also be implemented through the use of square-root
filtering schemes, which can reduce the computation time, and also provide some

added stability to the filter (Skliar and Ramirez, 1997b).

4.3 Filter Implementation and Testing

A “true” test of the filter can only occur in an experimental setting, with a
physical cabin and measurements. In the absence of that, we tested the filter using
the results of the model itself. We added a random Gaussian noise to the contaminant
concentrations from the model, as we would expect to get in a real setting and then
checked to see if the filter was able to track the contaminant concentrations with
sufficient accuracy.

The filter is a computationally intensive program, and we found that it was
taking around 30 seconds for each time step on a DEC-Alpha Station 250 4/266.
We therefore ran the model and the filter with a 30s time step. We are using a
set of five sensors to estimate the concentration in the whole room. In order to
test the filtering process, we have crowded all of the sensors in one corner of the
cabin, to see how robust the filtering process is. Table 4.1 shows the position of
the sensors. The co-ordinates refer to the location of the sensor grid points within
a rectangular geometry of size 6 x 2 x 2m which used a grid of dimensions 15 x
28 x 30. For the filter to be useful, good estimates of the model uncertainty and
the measurement uncertainty are needed. This estimation is not a trivial process,
and will require among other things, experience in running the filter for specific
systems and conditions. The model uncertainty, Qg;qy can be closely tied to the
amount of turbulence in the system and the error in the numerical solution to the
convection-diffusion equation. The measurement uncertainty, Ry;ay should reflect

the uncertainty present in each sensor, which is quantifiable by test experiments.
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Table 4.1: Sensor location and the associated measurement noise

Sensor | Co-ordinates R

1 3,2,3 0.001

2 1,1,3 0.001

3 2,2,2 0.001

4 3,1,2 0.0019

5 2,4,3 0.0019
Estimation of Contaminants
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Figure 4.1: Filter Performance-Tracking an arsitrary point in the cabin. The real
concentration at point (1,2,3) is given by the s>lid line, and the estimated concen-
tration from the filter is given by the dotted lire.
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Figure 4.2: Filter Performance at (10,10,10). The real concentration is given by the
solid line, and the estimated concentration from the filter is given by the dotted line.
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Figure 4.3: Filter Performance-Tracking at Sersor #1, located at (3,2,3). The solid,
dotted, and dashed lines indicate the true concentration, the measured concentra-
tions, and the optimal estimate of the concentrations using the Implicit Kalman
Filter, respectively.
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Figure 4.4: Filter Performance-Tracking at Sensor #2, located at (1,1,3). The solid,
dotted, and dashed lines indicate the true concentration, the measured concentra-
tions, and the optimal estimate of the concentrations using the Implicit Kalman
Filter, respectively.
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The graphs show sample results of the contaminant concentration estima-
tion for 30 time steps. Figures 4.1 and 4.2 show the tracking of two arbitrary points
in the domain, while Fig. 4.3-4.4 show how the filter functions at the sensor loca-
tions in the presence of measurement noise. The tracking is fairly accurate and is
mathematically consistent. The error for points in the domain that are distant from
the sensors is naturally higher. The filter slightly lags the “true” values. That, too,
should be expected, since the filter does not “know” about new source emissions.

Figure 4.5 shows the error at four different sensor locations as a function
of time. The dashed line, which is the bound of the error is determined by the
estimation error covariance at that location. In this example, we have chosen 3¢
as the bound, where o represents the standard deviation of the expected estimation
error, based on the fact that 99 % of the estimates would fall within this bound. It is
expected that the error stays within the bounds that are indicated by the uncertainty,
which changes from its initial value until it reaches a steady state value. Figure 4.6

shows how the uncertainty varies with time.

4.4 Uncertainty

4.4.1 Modeling uncertainty

The main source of uncertainty in the system being studied is that of the
wind velocities. The flow field is by far the mos* important parameter in the disper-
sal of the contaminants. In addition, there are t e other usual uncertainties inherent
in the physical modeling of any system, errors in the measurement, and the pres-
ence of faults. There are two reasons why there are uncertainties in the flow field.
Firstly, turbulence is stochastic in nature, and the flow field obtained, by definition,
is approximate since it is a time averaged quant ty. Graphs showing the actual mea-
sured velocities indicate this quite clearly (Zhang et al., 1992; White, 1974). The

other reason is that numerical procedures essentially yield approximate results. The
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residual norms of the errors are a measure of how approximate the numbers are.
The objective in studying the uncertainty is to structure the uncertainty in order to
produce a measure of how reliable our estimate of the state is and how robust the
procedure is. It is crucial that the diagnosis be accurate, that no fault go undetected;
at the same time, any false alarms must be avoided since that would mean the loss
of precious crew time. Most fault detection procedures will ultimately detect any
given fault; the objective is to detect the fault as early as possible using a proce-
dure that is known not to yield too many (or any) false alarms. The structuring of
the uncertainty therefore, is a prerequisite to the fine tuning of the fault detection
algorithm.

An analysis of the uncertainty would require an experimental set-up, and
data in order to evaluate the model results. In the absence of that, one could
artificially change some parameters, and then evaluate the performance of the filter
and the model. We next consider the effect of a change in the inlet velocity on the

model results.

4.4.2 Effect of randomness in inlet velocity

The dispersion model assumes the existence of a steady state flow profile.
Here, we examine the effects of a variation in the inlet velocity on the estimation
€rror.

For the turbulent flow field simulated in Chapter 2, the THC inlet velocity
is specified to be 0.5 m/s. Now, assume that the velocity decreases by 15 %.

The steady-state Navier-Stokes equations are next solved for the new bound-
ary conditions. A study of the actual velocities shows that some internal velocities
decrease by more than 15 %, depending on the location, not a surprising result since
the Navier-Stokes equations are non-linear, and the turbulent energy itself causes
substantial noise in the system.

The new velocities are used in conjunction with the mathematical model
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Table 4.2: Sensor location and the associated measurement noise

Sensor | Co-ordinates R

0 1010 10 0.0001
1 8223 0.001
2 367 0.0001
3 666 0.0023
4 411 22 0.019
5 81418 0.0019

to generate the “true” concentrations for the given concentration initial and bound-
ary conditions. The filter, however, is not updated with these velocities, since our
objective is to evaluate its performance when conditions change unknown to the
model. Monitoring the inlet flow velocity would take care this change and update
the model, a procedure that is discussed in the next section. In the first case, we use
the uncertainties from Table 4.2.

The tracking at Sensor locations 0 and 4 is shown in Figs. 4.7 and 4.8.
The filter uncertainties in this case balance the model uncertainties, and the filter
consistently over-predicts the concentrations at both locations. The main reason
for this is the fact that the reduced inlet velocities causes a reduced flux of the
contaminant into the chamber, since the inlet concentrations remains unchanged.
This 15 % reduction in the flux persists throughout the duration of the experiment,
and the filter, constrained by the mass balance over predicts the concentration.

The residual error curves for Sensors 1) and 1, shown in Figs. 4.9 and 4.10
show the error that is negative (with the estimiited concentrations being lower than
the actual) and increases with time. The errors increase at different rates, and the
rates depend on the local velocity and location with respect to the ducts.

The Euclidean norm of the predictior error, shown in Fig. 4.11 rises dra-
matically, and clearly exceeds the error bounds. and the fault in the system is quite
apparent.

This case dealt with the situation in wich the model and sensor uncertain-
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Figure 4.7: Tracking of the contaminant concentration at sensor location #0 with a
15 % reduction in the inlet velocity. The filtered estimate (dashed line) over-predicts
the real concentration (solid line). The measurements are shown by the dotted line.
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Figure 4.8: Tracking at location 4 with a 15 % reduction in the inlet velocity. The
filtered estimate (dashed line) over-predicts the: real concentration (solid line). The
measurements are shown by the dotted line.
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Figure 4.9: Residual error at sensor location 0 with a 15 % reduction in the inlet
velocity. The magnitude of the error is increasing with time.
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Figure 4.10: Residual error at sensor location 1 with a 15 % reduction in the inlet
velocity. The magnitude of the residual (estimation) error increases with time.
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Figure 4.11: The Euclidean norm of the erro1 with a 15 % reduction in the inlet
velocity is shown increasing with time. The estimation error clearly exceeds the
error bounds (dashed line), indicating the pres:nce of a fault.
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Table 4.3: Sensor location and the associated measurement noise- very low sensor
uncertainty

Sensor | Co-ordinates R

0 1010 10 0.000001
1 8223 0.00001
2 357 0.000001
3 666 0.000023
4 411 22 0.00019
5 81418 0.000019

ties were weighted equally. If we expect extensive noise in the system, for example,
if a 15 % change in the inlet velocity were common, one would then have to give the
measurements a higher certainty level in order to obtain better tracking performance.

For this situation, we repeat the previous case, but with the lower mea-
surement uncertainties listed in Table 4.3. The sensor uncertainties, Rgiqq have been
reduced to about one hundredth of their usual values. The results are shown graph-
ically in Figs. 4.12 through 4.16. Onme can clearly observe that the tracking using
these very low uncertainties is an improved over the previous case. In this scenario,
the model is relatively unimportant, and the measurements become paramount. This
all comes at a cost, of course. With these very low sensor uncertainties the ability

to filter out the noise is impaired.

4.4.3 Double Filter

Since one of the major sources of uncertainty and error in this model is the
velocity, a variant of the Implicit Kalman filter such as a double filter could be used
for improved performance. The double filter is a Kalman filter, but the difference
between the measured and model velocity is also used to update the final state of
the system. It is expected that this will increase the sensitivity of the filter and
consequently increase accuracy. The filter will therefore have a set of concentration

sensors, measurements from which are used to update the right side of the state
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Figure 4.12: Tracking at sensor location 0 with a 15 % reduction in the inlet velocity
for very low measurement uncertainties. The filter (dashed line) now tracks the
measurements (dotted line) very closely.
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Figure 4.13: Tracking at sensor location 4 with a 15 % reduction in the inlet velocity
for very low measurement uncertainties. The filter (dashed line) still over-predicts
the concentration, but the tracking is slightly better than in Fig. 4.8.
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Figure 4.14: Residual error at sensor location 0 with a 15 % reduction in the inlet
velocity for very low measurement uncertainties. The presence of the residual error
indicates the presence of a fault, but the error in this case is lower in magnitude than
with higher sensor uncertainties.
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Figure 4.15: Residual error at sensor location 1 with a 15 % reduction in the inlet
velocity for very low measurement uncertainties. The presence of the residual error
indicates the presence of a fault, but the error in this case is lower in magnitude than
with higher sensor uncertainties.
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Figure 4.16: Euclidean norm of the error with a 15 % reduction in the inlet velocity
for very low measurement uncertainties. The presence of a fault in the system is
evidenced by the fact that the residual error solid line) clearly exceeds the error
bounds (dashed line).
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estimation equations, and a set of velocity sensors, which will perturb the left-hand
side of the state estimation equations. The new state estimation equations, will

therefore be of the form,

(—az/2 -1/At)¢" = (0z/2+ay+a; —1/At)gm + frn + L1z — HiGm41)m)]
(—ay/2 - 1/AHG™ = —oy/2¢m — 1/Atg" + Loz — Hifmy1jm); (4.21)
- — ok ~
( ) - 1/At)gm41 = Tsz — 1/Atg™ + La[z - Hlym+1|m]a

where a;, oy, and o, represent the filtered left hand side terms. The time step used
in updating the velocity filter could be much larger than the time step used in the
rest of the filter, in order to minimize the computations needed.

Implementation of this double filter was out of scope for this work, but can

be easily implemented and tested.

4.5 Summary and Conclusions

A state estimation procedure was implemented using the Implicit Kalman
Filter, which provides accurate estimates of the contaminant concentrations at all
points in the cabin, using the transport model developed in Chapter 3 in conjunc-
tion with a measurement system. The filter is an effective tool for rejecting sensor
noise, and provides smooth estimates of the state of the system in real time. The
performance of the filter in the presence of a major disturbance was studied, which
showed that a proper choice of the model and measurement noise covariance matrices
can lead to good tracking behavior in the presence of noise. Parameter estimation,
and its use in combination with the state estimation procedure could lead to further

improvements in overall estimation performance.



Chapter 5

Fault detection in distributed parameter systems

5.1 Introduction

In this chapter, we discuss the use of the Implicit Kalman Filter in the
implementation of a Fault Detection algorithm. Fault detection is the procedure
which alerts the user to a malfunction in the system. Fault detection is the first step
in the comprehensive Fault Detection and Isola:ion (FDI) problem. Basseville, in his
discussion of current methods in FDI (Basseville, 1997), mentions that FDI is split
into two steps; the generation of residuals, which are ideally zero under fault-free
conditions, minimally sensitive to noises and disturbances, while being maximally
sensitive to faults, and residual eveluation, waiich concerns the design of decision
rules based on these residuals. A detailed account of fault detection algorithms can
be found elsewhere (Basseville and Nikiforov, 1993). Methods of fault detection are
classified into methods that are Model based or those that are Statistically based.
Statistical methods are the only options whe1 detailed model information is not
available and consists of continuously examining the statistical properties of the
measurement data, and noting any substantial deviations from a pre-determined
threshold band. Model based methods, on the >ther hand, use the knowledge about
the system and infer unmeasurable characteristics of the system from the measurable
using this knowledge.

The fault detection algorithm consists of a sensor fault test procedure and
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a process fault detection procedure. The sensor fault testing procedure forms the
inner shell of the algorithm, since the sensor readings will have to be validated before
further processing. Then, the readings are evaluated for a possible process fault.
Under normal conditions, both the tests would be negative, and the filter would
continue onto its next time step. For the purposes of air contaminant monitoring in
spacecraft, we envision two kinds of faults; Instrument or sensor faults and Process
faults. A Sensor fault, as its name suggests, implies that one or more of the sensors
is not functioning. The fault could be in the form of a total malfunction, where the
sensor readings are totally random with no physical basis, or could be manifest as a
bias in some direction.

A process fault may be present as an unknown source problem, or as a
violation of a safety requirement. While we expect that faults will be infrequent, a
fault detection procedure is crucial since it is under conditions of a fault that the

utility of the system is realized.

5.2 Sensor Fault

One method for detecting sensor faults is that of hardware redundancy
(Emami-Nacini et al., 1986), in which sensors are used at each location, and an
agreement between all three sensor readings is necessary for that sensor reading
to be accepted as valid. If one of the three sensors shows a deviation statistically
significant from the other two, then that sensor is considered to be faulty. Hardware
redundancy is costly because of its need for triple the amount of hardware especially
in a space environment, where weight are power requirements are concerns. Hardware
redundancy, though might become feasible for on-board applications if the cost and
weight of the sensors drop enough to offset the cost of the extra computational
requirement due to analytical redundancy.

Another approach is called analytical redundancy. Analytical (or func-

tional) redundancy is a model-based fault detection procedure where a single set of
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measurements is used in conjunction with a mo-el and a detection algorithm in order
to detect and distinguish between faults. Here, the set of sensors is separated into
two. In our example, Sensors 1-3 (Table 4.1) «re part of Filter bank 1; Sensors 4-6
part of Filter bank 2, and the complete set of sensors 1-6 form part of Filter Bank 0.
The three filters are run simultaneously, one with the complete set of sensors, and
one with each individual set of sensors. Three residuals characterize these banks of

Sensors,

ro = Zm+1 — H1Gm 1jm+1 (5.1)

r= zrln+1 - Hllqun Flim+1 (5.2)
2 ~2

rz =zpq ~ &0 i (5.3)

where the superscripts refer to the appropriate sensor banks. When all three banks
show a similar residual, the sensor system is working normally. When two of the
banks deviate, then one of the sensors in that bank is malfunctioning, and the other
bank alone should be used in the filtering process. Mathematically, this amounts to
checking if

Irollz =l r1 l2=] r2 |l2 (5.4)

within bounds of error at each time step. ||r||2 -epresents the‘Euclidean norm of the
quantity, which represents the distance of the vector from the origin.

Figure 5.1 shows the residuals calculiited for three different banks in the
absence of a fault, while Fig. 5.2 shows them in the presence of a fault in Bank 0
and Bank 1. In Fig. 5.1, the residuals of the estimation error in all three banks is
around 0.015 throughout the time period under consideration. In Fig. 5.2, however,
while Bank 2 maintains its residual of 0.015, Banks 0 and 1 have residuals around

1.5, which are significantly higher. Bank 2 is therefore functioning normally, and its
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Figure 5.1: Residuals of the three Filter banks under normal operation. Note that
all three banks posses estimation errors that are similar in magnitude.
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estimates alone should be used to monitor the contaminants until the faulty sensor
is identified and rectified.

This method requires high computational power but does not need an in-
terruption of the operation once a fault is detected, since a smooth transition to the
functioning bank of sensors can be made. Alternatively, one can just monitor each
individual sensor for its residual and determine a malfunction. Figure 5.3 shows the
residual error for three sample sensors in the case of a sensor fault. It is quite ap-
parent from the three sensor error graphs that Sensor 2 is malfunctioning, and that
the others are functioning normally. The working of the filter can be seen. Since
the filter does not “know” that a fault has occurred, the filter is starting to respond,
and even the non-faulty sensors are showing errors that are almost exceeding the
bounds.

This procedure required less computational power, but the filtering process
after the detection of the fault becomes complicated, because of the process of taking

out the malfunctioning sensor’s readings from the existing filter.

5.3 Unknown source

The problem of an unknown source could be something as minor as higher
than expected carbon dioxide levels because of increased activity in the cabin or
could be a major leak. An unknown source will cause the model to vary consid-
erably from the measurements and cause large estimation errors. Monitoring the
estimation error is the key to identifying the presence of unknown source substances
and contaminants. The way this is detected is through having safe bounds for the
residual error, and if the residual error exceeds the bounds, then the diagnosis for
an unknown source is initiated. Figure 5.4 shcws a sample result where the error
bound is exceeded owing to an unknown source. The case of an unknown source is

discussed in greater detail in the next section, in a simulated Space Station scenario.
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5.4 Operation fault

An operation fault is a rather serious situation that arises when the space
operation itself is in identifiable danger because the space atmosphere is seriously
contaminated. One way of recognizing a fault in the system would be by studying
the state of the system, which in this case would be the concentrations of each
contaminant at every grid point. A fault can be posed using the norms of these data,
the way it is commonly done in linear system theory. For purposes of contaminant
monitoring aboard the Space Station, a fault can occur both in the I3 and the I3
sense. A fault in the [ sense occurs for the case of substances that cannot exceed a

certain SMAC, and which is an acute toxic. For such substances, a fault occurs if

I 12(g) 11> gc (5.5)

where ¢, is the appropriate SMAC for that contaminant, and !/, and I are the 1 and
2 norms of the concentration vector. A fault in the /2 sense occurs when the process
-fault affects the health of the cabin in an overall sense. For example, a fault in the

oxygen system occurs if

Il l2(q) 1< ¢c

and a fault in the carbon dioxide system occurs if

Il 2(g) 1> cc

Situations could vary from high CO: levels that have exceeded the long
term or short term SMACS, or with toxic releases detected at levels that are known
to be harmful to humans aboard. The situation could further be subdivided into
either a local or a global fault, and the detection algorithm is able to distinguish

among these.
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5.5 Scenarios

5.5.1 CO, operation

We will discuss the utility of the monitoring system in two specific scenarios,
both relating to the CO; levels in the Space Station (Narayan and Ramirez, 1998a).
According to NASA standards, CO, must be present in the cabin at levels between
0.3 - 0.80 volume %. The highest level it can reach is 1.3 volume %, and when that
level is exceeded, the mission is called off.

In the first scenario, we consider a case in which there is a leak of carbon
dioxide from a carbon dioxide storage system. This means that CO; is constantly
being added to the system and is likely to accumulate until some action is taken.
Since this is unknown to the model, a good test of the filter would be to see how
quickly this is detected. In this circumstance, it would be useful to monitor the
levels and raise an alarm if the emergency levels are exceeded. Figure 5.5 shows
how this situation leads to an emergency situation, when no mitigating actions are
undertaken. The CO; concentration violates the SMAC at time, t = 320 s.

In the second scenario, we simulate a fire in one section of the cabin, which
is extinguished by a CO; extinguisher. (Halon cannot be used aboard the Space
Station.) The COg level consequently will immediately rise in the vicinity of the
fire (both due to combustion product and due to the use of the extinguisher), and
we wish to monitor how the level declines, and when the cabin becomes habitable
again. This sort of a simulation would be invaluable in cases where there are multiple
modules, and activity can be curtailed in the module under scrutiny until the levels
are safe again. The release occurs at time t = 20 s, and continues for 40 s. Figure
5.6 shows how the concentration of CO2 changes with time for Sensor location #0.
The SMAC is locally violated at t = 70 s, and the cabin is safe for habitation again
at t = 200 s. The utility of the three-dimensional model lies in the fact that even

local violations of safety standards can be detected, at both sensor and non-sensor
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Figure 5.5: Average concentrations in the cabir in the presence of a continuous leak
of CO;2. The dotted-dashed line indicates the ¢rror bounds outside which a fault is
declared, and the dashed line is the SMAC level for CO,.
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locations even when the average concentration of the contaminant in the cabin lies

below the SMAC.

5.5.2 Other contaminants

The monitoring of acute toxics would follow a slightly different procedure.
For one, they are not normally present in the cabin atmosphere, so there are no sensor
readings. Secondly, there are many specific toxics, each with different SMACS, and
different sensors. Also, the tolerance for these substances will be tighter, so the
procedure needs to be extra-sensitive.

For this purpose, the best procedure would be to have a backup filter ready,
and initialized, which can be activated as soon as any of the sensors register a reading
for the toxic. The procedure can then access a central database for the SMAC for
the substance, and begin to operate on the filter measurements. Since it is likely to
be an unknown source, a diagnosis will have to be performed at the very beginning
itself. A sample result is shown in Fig. 5.7. Sensor readings are identically zero,
and the residual and the filter both show a zero reading. A source is introduced at
time = 100 s , unknown to the filter. The filter responds almost immediately, and

the fault is quite apparent within 10 s of the release.

5.6 Summary and Conclusions

Fault detection algorithms have been implemented using the error residu-
als from the Implicit Kalman filter. The algorithm is able to detect and distinguish
between sensor and process faults. The principle of Analytical redundancy using par-
allel banks of filters is used to detect sensor faults, while process faults are detected
when the residual estimation error from the filter exceeds pre-determined bounds.
The filter is able to detect faults very quickly, which would be critical during space

missions.
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Figure 5.6: Local concentration at a sample lacation in the cabin. The solid line
indicated the true concentration at the Sensor location, and the dotted line, almost
indistinguishable from the solid line is the filtered estimate of the concentration using
the Implicit Kalman Filter
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Figure 5.7: Filter response for an acute toxic release at t = 100 s. The filter responds
rapidly, and clearly signals a fault with the residual error exceeding the error bound
in about 15 s after the release.



Chapter 6

Source identification - solving the inverse problem

6.1 Introduction

The final portion of this work is devoted to the inverse problem - that of
identifying the unknown source that is causing a fault that has been detected by the
detection algorithm. A rich body of literature exists in the realm of inverse problems
(Alifanov, 1994; Kurpisz and Nowak, 1995), although much of the work has remained
theoretical (Kirsch, 1996) with a few practical solutions. Part of the reason for this
is the relative intractability of inverse problems, beyond simple cases with restrictive
assumptions.

One characteristic of an inverse problem is the unique manner in which
data errors affect the error in the solution. The classic example given by Hadamard

(Hadamard, 1923) was that of finding a soluticn u to the Laplace equation

_ Pulay) | Pulz,y)

Aulz,y) : 322 By = 0inRX (0, 00) (6.1)
that satisfies the conditions
a
u(z,0) = f(z), 6_yu($’0) =g(z),z € R, (6.2)

where f and g are given functions. The unique solution for

flz)=0
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and

g(z) = -lesz'n(nx)

is given by

1
u(z,y) = ﬁsin(nx)sinh(ny),x e,y >0. (6.3)

With this solution, we therefore have
1
sup{|f(z) + g()|} = ~ = 0,n = oo, (6.4)

but then, for the error,

1
suplu(z,y)| = Esinh(ny) — 00,m — 00 (6.5)

for all y > 0. So, even though the error in the data tends to zero, the error
in the solution u tends to infinity.

Thus, a zero error in data tends to result in an infinite error in the solution

6.2 Literature survey of solution methods

Skliar (Skliar, 1996) used a one-shot optimization solution to estimate the
location and capacity of a source, once it was detected. While this a relatively
quick operation, and computationally non-intensive, it is prone to very high errors,
especially in the presence of measurement noise.

A study very similar in scope to ours was carried out (Richards et al., 1997a:
Richards et al., 1997b) for application to a fire detection problem. They proposed
a method for detecting, locating and sizing accidental fires in warehouses, based
on the solution to an inverse heat transfer problem. They use a forward solution
database, and minimize the least square error between estimated and measured times

of activation of sensors that have been installed on the ceiling of the warehouses. On
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closer examination, however, their problem turns out to be simpler since they assume
a quiescent room with no air motion, and that the heat transfer occurs primarily
through a buoyant plume of combustion gases that rises to the ceiling. Theirs is a
one-shot solution mechanism.

The estimation of multiple unknown sources is further complicated, and
not many solutions exist. Cheng-Hung Huang and Jan-Yue Wu (Huang and Wu,
1994) solved the two-dimensional inverse problem for two heat sources, but then,
they assumed the boundary at which the sourzes were acting, therefore converting
the problem to an inverse boundary problem.

Mass transport inverse problems are common in geology where measure-
ments at the earth’s surface are used to infer properties of processes occurring deep
inside the earth. A general model has been developed (Talenti and Tonani, 1995)
for gas-emitting geological systems, where the bulk gas velocity at the surface is
used to locate the strength and location of tae gas source. Another application
for inverse problems that dealt with mass transfer was developed by Australian
researchers (Newsam and Enting, 1988; Enting and Newsam, 1990; Enting, 1993),
who considered the problem of estimating surface sources of carbon dioxide and other
trace contaminants from surface concentration lata. They used a three-dimensional
diffusion model for their transport process anc: analytically solved the equation to
account for the influence of various factors on the ability to invert measurement data
to obtain source estimations.

An elegant mathematical formulation for the determination of the source
term was developed (Nanda and Das, 1996) for special cases of the heat conduction

equation, which however assumes a specific matliematical form of the source function.

6.2.1 Extended Implicit Kalman Filter

Once a fault is detected, the next step is the identification of the source of

the fault, namely its location and capacity. The 2-D model of Skliar used a one-shot
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source identification, which is susceptible to high errors, especially in a system with
so much noise (Skliar, 1996). Source identification problems of this type fall into the
realm of inverse problems (Alifanov, 1994). An inverse problem , simply defined, is
one where the cause is discovered from a known result. They arise in electrodynamics,
geophysics, astrophysics and many other fields (Kurpisz and Nowak, 1995). Inverse
problems are ill-posed, which would mean that small data errors can lead to serious
errors. Many fault diagnosis methods have been developed over the years, most of
them applying to lumped systems. In general, they can be classified into pattern
recognition (e.g. fault dictionaries), logic-based/information flow graphs (i.e., fault
trees, signed directed graphs), and estimation/analytical redundancy methods. The
reader is referred to one of many survey articles that address these issues (Basseville,
1988; Frank, 1990; Gertler, 1991; Korbicz et al., 1991). While many tested techniques
exist for lumped systems, distributed systems prove harder to solve because of the
indirect relationship between the measurements and the model variables, and due to
the large size of the model matrices.

A multi step identification is proposed here, and the source identification
will carried out over the time range between the time that a fault is suspected and
the time that it is finally isolated. During the diagnostic process, the main filter will
continue to run, but with a larger time step. At the end of the diagnostic process,
the detected source term will be incorporated into the main mathematical model.

The Implicit Kalman Filter, developed in Chapter 4, can be extended in
order to estimate the unknown source. Extended Kalman filters are modifications
to the Kalman filter (Halme and Seikainaho, 1986; Himmelblau, 1986) which can
then be used to estimate both the state and parameters of systems. This is done
through augmenting the state by adding the unknown source vector, f,, to the state.
Using a vector representation for the unknown source allows us to generalize the
formulation to include unknown sources that are distributed spatially and multiple

unknown sources.
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The new augmented state is now

Q= A (6.6)

fum

where Qum,, the augmented state is given by Equation 4.5, and f,, the unknown

source vector of dimension n is given by the equation

Here, f,; represents the capacity of a single unknown source. The vector, f,
can be modified to handle a single source distributed spatially, or multiple sources.
In addition, we assume that the source term is relatively unchanging, and
that it satisfies the equation
df,

E = 0 + w“m (6-8)

where wy,,, is the uncertainty associated with ~he unknown source.
Integrating and discretizing the equation, we obtain the following equation
for the description of the new state.

fum+1 = fum + kmWum (6.9)

where kp, is a matrix reflecting the integration :ime step. The noise in the unknown
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source is characterized by its covariance, Sp,, which is a user-defined constant that
depends on how much the unknown source capacity can vary. High values for S,
reflect a high uncertainty in the unknown source capacity, and will result in a filter
that responds quickly to the residual errors, whereas low values for S, reflect a fairly
constant unknown source capacity and will result in a filter that responds slower to
the residual errors, but one that will provide a smoother solution for the unknown
source estimation.

The state equations, once the unknown source is included now read

A a a —_ A a a fm Wm
1 Qm+l = A2 Qm + + Cm km (610)
0 Wum
where
[ (A _ r ]
(== — x7) 0 0 0
& (&0 0
A= . (6.11)
0 £ G- o
] 0 0 0 W |
and
0 0 (Ax/2+Ay,+A,—r/At) W
0 0 -A,/2 0
At = v/ (6.12)
00 ~A,/2 0
| 0 0 0 W

W is an n x n diagonal matrix, where n is the number of grid points used for the
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discretization, and has the structure,

W = (6.13)

The matrix is extremely sparse, with all zeros except for source location, where there
is a unit term. This unit term picks off the source capacity scalar term on expansion
to yield Eq. 6.9. For multiple sources or single sources that are distributed spatially,
there will be as many non-zero terms as there are sources, placed at the appropriate
grid points.

The measurement matrix remains unchanged since we have no measure-
ments that have a direct bearing on the unknown source, but the matrix has to be

augmented.

Zm+1=| Hi(m+1) 0 Qny+ Vmt (6.14)

The filter changes to account for the new state and the estimation algorithm
consists of an Implicit and an explicit part, the Implicit part used in the estimation
of the state, and a parallel explicit portion usec in the estimation of the strength of
the unknown source. The gain terms serve to m ultiply the residual errors generated

in order to update the state estimation for the 1ext time step.
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Filter (Implicit):
A | A r
(__Z_X_A_t)q = (Tx+Ay+Az_E)qm+fm+fum+
Ll[z - Hlym+1|m]
A r *x A I o« v
(—7)' - E)q = ——z’iqm - Eq + LZ[Z - Hlym+1]m] (615)
A r A, r L. -
(__2_2 —_ Zf)qm“ = ——z—qm — Eq + L3z - Hlym+1|m]
Filter(Explicit):
fum+1 = Iym + L4[Z - Hlym-i-l[m] (616)

The predicted estimated value for the auxiliary variable y? is given by the

following equation

. A2 R fm + fum
Ymsiim = Gmjm + (6.17)
\%Y% 0

where y? is the new augmented estimate and is a column vector of size 4n.
The augmented Implicit Kalman Gain matrix is a 4n by m matrix, with
four partitions (one for each co-ordinate direction and one for the unknown source)

and has the structure

T
Lm+1*=| LT LT LY LT (6.18)
and is obtained from the equation
a a -
L3; =PY BT HL°PY,  HT® 4 R(m + 1)) (6.19)
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where
Px}:n+l|ma = (6.20)
13 18T 13 23T 3 33T |
Az Pm|mA + A}®P2 mjm A3 Al3pd m|m A3 m|m+CQST
+P5m + CQCT
Azap Al3T Azap A23T jA'zap AS3T 0
mim*‘*2 m|m**2 m|m‘*2
33 13T 33 23T 33 33T
A P;‘nlmAz A3 anlmAz Ay P?nlmA-j’ 0
T
mjm +SQC 0 0 mim T SQST |
Pf’n +1|ma is the augmented predicted error covariance matrix, and is of
dimension 4n by 4n. PY m{m is the uncertainty matrix associated with the unknown

source, and in general is an n by n diagonal matrix, with the uncertainty due to each
unknown source location as the diagonal elements, though it reduces to a sparse
matrix with just one diagonal element, for a fault caused by an emission at one
spatial location. P:‘nlm is the covariance of the estimated error, and defined by Eq.
4.21. C and Q represent the stochastic model disturbance transition matrix and the
model covariance matrix, respectively. The superscripts in the A, matrix refer to
the appropriate partitions of the A2® matrix defined earlier.

The gain matrix partitions, Lz and L3 remain unchanged from the simple
implicit filter, and only the L; partition changes, along with the introduction of the
new gain partition for the unknown source, Ly. The gain matrix partition, L; now
becomes a function of the uncertainty term of the unknown source, P::‘n]m’ which is
then used in the correction term for the first Imiplicit Kalman Filter equation in Eq.
4.13.

Example:

For a system with six sensors and one¢ unknown source, which is the most
commonly expected fault, the gain matrix partition for the unknown source term

has the structure
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[0 )

0

0

\ 0

where i refers to the location of the unknown source in the cabin. la(;) is a row vector
of dimension m, and is evaluated by simplifying Eq. 6.19 for one unknown source.

In general, L4 has as many non-zero rows as there are unknown sources.

lay =

(p?n]m+3qc)|:hll(1) hir@y hue) hug hie) hige) } x

(r 1
hi1(y
hi1(2)
\ " (P%|m+3qc)[h11(1) hii2) hu@) huw P huge) ] +6.22)
h11ay
h11(s)
L P |
- R 0 0 0 0 0 N
0 R, 0O 0 0 O
0 0 R 0 0 O >
0 0 0 R 0 O
0 0 0 0 Ry O
i 0 0 0 0 0 Rs )

The lower case symbols, p, s, ¢, and ¢ represent the scalar terms for the uncertainty
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associated with the unknown source, the transformation factor representing the inte-
gration term in the unknown source terms, and the model uncertainty for that grid
location.

The measurement term for the grid point where the unknown source is
located for sensor s. is hyy(5). The computation therefore vields l4(7), which is a row
vector of dimension 6, since we have six sensors in this case. Each of these six gain
terms multiplies the appropriate sensor residual from z — H,y , which is then used
to update our estimate for the unknown source location via Eq. 6.16.

The gain term, in turn is used to propagate the uncertainty for the next

time step, which is governed by the equation

Py rtjme1 = (I - L HIPY L i (6.23)

and

Pygn+1|m+1 = A%PQm+1|m+1A1T0, (6.24)

6.2.2 Initial guesses through sensitivity matrices

The Extended Implicit filter, like all Kalman filters requires an initial guess
for fu,,, which is not a trivial problem. While the filter performs well in filtering
out noise, and adjusting for model errors, its performance in estimating an unknown
source depends crucially on a good initial guess for the location of the unknown
source emission.

For the purpose of this derivation, wi: assume that there is only a single
localized source term that is causing the fault. The solution can be extended to
multiple and distributed sources, but it would he more complicated since the single
source will be broken down into a combination of linearly independent single sources.

In this work, we use pre-calculated sensitivity coefficients for the purpose.



113

Sensitivity coefficients have been widely used in estimating solutions to inverse prob-
lems, especially in areas of heat conduction, geology, and tomography (Alifanov,
1994). Some detailed analysis of sensitivity coefficients and their properties and use
are also available (Beck et al., 1985; Kurpisz and Nowak, 1995). The sensitivity

coefficient can be defined as
dq

Z:—é?:

(6.25)

where f,, represents the source term. The sensitivity coefficient term represents the
sensitivity of the concentration q at each mesh point with respect to the release of
a source at every mesh point. Z is calculated by solving the basic model equation,
Eq. (3.1). While Z is defined over the entire domain, the only points of interest
will be the sensor locations since those are only points about which we have direct
information about the concentration that we can use in the event of a fault. Z is
therefore partitioned into a usable and non-usable part,

Z= (6.26)

Zsensors Znon—sensors

This pre-calculated sensitivity matrix can be computed for different times,
in order to provide a window of time over which the fault diagnosis can be conducted,
depending on how soon the fault is detected.

The first step, therefore, is to calculate Z. In order to do this , we multiply
Eq. 3.1 throughout by 6%1’ which leads to the equation

% [aa_? +u-Vq= DMV2q+fu] (6.27)

Since f, is independent of the co-ordinate axes, we can rewrite Eq. 6.27 as

0 oq 9q\ _ 2(9q) O

Replacing Z for %% from the definition for the sensitivity coefficient, we
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get the direct well-posed problem equation

Z
%—t +u-VZ=DyVZ+1 (6.29)

subject to the appropriate boundary and initial conditions. The identity matrix, I
essentially is a unit source that is sequentially placed at every grid location in the
cabin in order to measure its effect on all the other grid locations. The boundary
conditions and the initial conditions will also have to be divided throughout by (—9%1
to obtain the initial and boundary conditions for the sensitivity problem. The Z
matrix is then partitioned to obtain Zsensors. Since the structure of the equation
is unchanged from the original model equation, the same algorithms and numerical
techniques can be used in computing the sensitivity matrix. For each time step, the
computation of the sensitivity matrix takes about 180 CPU minutes on the DEC-
Alpha 500 AU, and therefore, the computations have to be performed off- line and
before the time that the diagnosis can take place.

The solution to Eq. 6.29, Z(t), is a function of time, where the time refers
to the time elapsed since the fault occurred. For the purpose of using the Zensors
partition in calculating an initial guess for the capacity and location of an unknown

source, we use

Ziritical = Zsensor: |t=td,tu, (6.30)

where ¢ getec: refers to the time when the fault is detected. This yields a Z,,;ticqr matrix
of dimensions n x m, where n is the number of grid points, and m is the number of
sensors. In other words, the Z,icat matrix contains the response observed at each
sensor location for a unit perturbation at every location in the cabin. In the event of
a fault, this response is used in conjunction with the observed measurement response
in order to estimate the perturbation that caused the fault.

The solution proposed here consists of two parts; a first off-line part that in-
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volved pre-calculating sensitivity matrices, and which is a computationally intensive
process; and a final real-time computationally non-intensive portion that actually
computes a first guess for the location and the capacity of the unknown source emis-
sion.

The strategy of the method is as follows:

e The ill-posed problem is made well-posed by making assumptions about the

problem in the areas of ill-posedness, in this case the unknown source term
e The well-posed direct problem is solved for this assumed value(s).

e The measured quantities are noted for the ill-posed problem using the sensor

system

¢ The calculated values for the assumed problem are compared with the mea-
sured values from the sensor system, and the assumed input data are modi-
fied to ensure a matching of these two quantities. Although this method is
likely to yield a correct solution, the nature of an ill-posed problem could
mean that there are multiple solutions, with the method being able to iden-

tify only one of them.

Once the sensitivity matrix has been calculated, we now demonstrate how
it is used in the fault diagnosis process.
In the event of a fault being diagnosed, an error m-tuple is generated using

the prediction errors from the Implicit Kalman Filter.

e
€2
€3
e=| © (6.31)
€m—1

€m
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where e, €2, ep,—1 and ey, represent the prediction errors for Sensors 1,2,m-1 and m,

and represent the error between the projected estimate and the measurement signal,

€ = Zi — Yim41jm (6.32)

Next, the capacity of the unknown source is calculated, sequentially assum-

ing that the emission occurred at each location in the cabin,

A
Cap,; = j (6.33)

ki
This calculation results in n projected capacity m-tuples, with the assump-
tion that the source is in each of n locations, where n refers to the number of grid
points being used. The algorithm being used for this estimation (Fig. 6.1) is given

below.

(1) Calculate capacities using Eq. 6.33.

(2) Scale capacities within each m-tuple using the maximum and minimum ca-

pacities within the m-tuple.

(3) Compute the standard deviation of the calculated capacities for each m-

tuple, for both of the scaled versions.

(4) Pick the point with the least standard leviation. If the same point is picked
using both the minimum and maximum scalings, that point is likely to be

the source location.

(5) If minimum and maximum scalings yizld different locations, use the loca-
tion which yields the lower standard d:viation as the starting guess for the

location of the unknown source.

(6) The initial guess for the capacity is calculated from Step 1.
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Diagnosis initiated by
Fault Detection System
Sensor system Estimate capacities for Precalculated Z j
each assumed location

Scale capacities using max and min
capacities in each m-tuple

Pick m-tuple with the
least standard deviation
QOutput to
Extended Filter

Figure 6.1: Sensitivity analysis algorithm that yields a guess for the location and
capacity of an unknown source




118

Table 6.1: Measurements after 1 time step

Source strength | Measurement
0 0.3000001
1 0.3005528
50 0.3276336
100 0.3552671

The final estimate is based on the principle that for the correct assumption
of the source, the m-tuple of the projected capacities would show the minimum
standard deviation, and would match the previously generated m-tuple of sensitivity
coefficients for the location, to a multiplicative real constant.

This is an area of work that is amenable to treatment using Artificial In-
telligence or Knowledge Based systems, where the algorithm is trained to pick up

patterns and suggest intelligent solutions based on learned past experience.

6.2.3 Sensitivity experiments

Tables 6.1 through 6.5 are the concentration measurements at Sensor lo-
cation #6 (8,14,18) for a unit source release at location (8,15,12). This location
happens to be at a sensor location closest to this source, and consequently has a
high response. The data are shown to indicate how the sensitivity indices helps
scaling.

The experiment was repeated for a se 1sor location farther from the source
emission éite, location #3 at (3,5,7). As expected, the sensitivity coefficients are

smaller in magnitude. Tables 6.6 through 6.10 show the concentration measurements

Table 6.2: Measurement at Sensor location #6 after 2 time steps
Source strength | Measurement

0 0.3000004
1 0.3013975
50 0.3698579
o1 0.3712551

100 0.4397156




Table 6.3: Measurement at Sensor location #6 after 10 time steps

Source strength | Measurement
0 0.3000708

1 0.3147669

50 1.034878

51 1.049574

100 1.769685

Table 6.4: Measurement at Sensor location #6 after 100 time steps

Source strength | Measurement
0 0.2533103

1 0.2858888

50 1.882236

51 1.914815

100 3.511162

Table 6.5: Measurement at Sensor location #6 after 300 time steps

Source strength | Measurement
0 0.121

1 0.1617357

50 2.115451

51 2.155323

100 4.109037
1000 39.99361

119
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Table 6.6: Measurements at #3 after 1 time step

Source strength | Measurement
0 0.2999996
1 0.2999996
50 0.2999996
51 0.2999996
100 0.2999996

at (3,5,7) for different times.
One interesting result is that the source is not detectable by this sensor
during the first two time steps, and even at 10 times steps, the effect is very slight.
The distance between the source emission location and the sensor location
is efficiently captured in the sensitivity coefficient, which is computed earlier. The
use of the sensitivity matrix in estimating the detectability of a fault is discussed

later.

6.2.4 Sensitivity analysis-Results

In a real setting, the sensitivity analysis would be tested by introducing
a fault, taking sensor readings, and checking to see if the sensitivity analysis will
estimate the source correctly from the readings. In the absence of an experimental
setting, we introduce the unknown fault, run the model, and use the model calculated
concentrations at sensor locations as sensor readings. In order to simulate a real
physical setting, we also add a Gaussian nois: to the sensor readings to generate
pseudo-experimental values for testing the Sensitivity analysis.

For our test case, we first pre-calculate the sensitivity matrix for the sensor

Table 6.7: Measurement at Sensor location #3 after 2 time steps
Source strength | Measurement

0 0.2999778
1 0.2999778
50 0.2999778
51 0.2999778

100 0.2999778




Table 6.8: Measurement at Sensor location #3 after 10 time steps

Source strength | Measurement
0 0.2826567
1 0.2826571
50 0.2826755
51 0.2826759
100 0.2826943

Table 6.9: Measurement at Sensor location #3 after 100 time steps

Source strength | Measurement
0 0.1181842
1 0.1196233
50 0.1901395
51 0.1915785
100 0.2620947

Table 6.10: Measurement at Sensor location #3 after 300 time steps

Source strength | Measurement
0 0.044009563

1 0.048030302
50 0.2450462

51 0.2490669

100 0.4460829
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Table 6.11: Sensor location and the associated measurement noise

Sensor | Co-ordinates R

1 10 10 10 0.0001
2 8223 0.001
3 357 0.0001
4 666 0.0023
5 41122 0.019
6 81418 0.0019

array shown in Table 6.11. The base-line concentrations are taken to be the steady
state concentration field for an initial CO, concentration of 0.6 volume %.

A source of strength 500 mg/m? is then introduced into the model, acting
at location (8,6,5), and the pseudo-measurements that are generated from the model
are used for the sensitivity analysis. A pseudo-random vector with six elements with
a bound of 5 % of the measurement was generated and added to each measurement
in order to mimic a sensor system with 5 % measurement noise.

The sensitivity analysis reports location (8,6,6) as the one with the least
standard deviation (0 = 23.67), and the capacities as calculated by each of the
sensors are reported in Table 6.12, the mean of which will serve as our initial guess
for the Extended Implicit Kalman Filter.

While the sensitivity analysis’ initial estimate is quite satisfactory for the
purpose of the filter, we also note that the next highest standard deviation (o =
200.86) was reported for the correct location (8,6,5), whose guess capacities are
reported in Table 6.13. One observes that Sensors 1-4 have excellent estimates for
the capacity, but the correct location is not reported by the sensitivity analysis
since Sensors 5 and 6 report capacities that increase the standard deviation of that
particular m-tuple.

Eq. 6.29 yields Zsensors that can be evaluated for different times. This can

provide a window of time over which the fault diagnosis can be conducted, depending



Table 6.12: Estimated capacities for assumed source at (8,6,6)

Sensor

Capacities (mg/m3)

158.2

140.7

154.7

158.6

103.8

DO =] W DN =

115.3

Table 6.13: Estimated capacities for assumed source at (8,6,5)

Sensor

Capacities (mg/m®)

501.9

512.5

512.5

512.5

| O | WO DN =

105.5

137.4

123
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on how soon the fault is detected. In our examples, we have only used Z ritical, and
this could cause large errors if the fault were not accurately detected. For cases where
one can expect a substantial delay in the detection of a fault, it would be prudent to
minimize the standard deviation of the capacities, evaluated over a period of time,
and using say, Zs—1, Z¢=19, and Z;=59, which would provide added robustness to the

analysis.

6.2.5 Iteration procedure for Extended Implicit Kalman filter

As we observed in the previous section, the sensitivity analysis can some-
times pick a point in the vicinity of the actual source, instead of the actual point
itself. The presence of turbulence in the cabin air, and general measurement noise
can increase the distance of the actual solution from the first guess. In order to refine
our solution, we use the property of the Imp icit Kalman Filter being an optimal
estimator and run the filter for the initial guess and determine the squared prediction
error. The final solution is reached when the point under consideration has the least
squared error when compared with its six nearest neighbors.

The algorithm for this location search is shown in Fig. 6.2 and has the

following steps.

(1) Choose one of B’s spatial neighboring points (grope), which has not been

previously visited as the assumed location for the unknown source.

(2) For this location, and the original estim ite for the capacity, run the Extended
Filter and obtain a new squared predic:ion error, and an estimated capacity

for that location.

(3) Repeat Steps 1 and 2 until all neighbor:: not previously considered have been

covered.

(4) Compare the Squared prediction error, and for the next approximation,

choose the point with the least SPE.
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Input of initial guess
(location and capacity)
from Sensitivity Analysis

l

Run Extended Filter for
Initial Guess location

Determine Squared
Estimation error
G ]

l

Run Extended Filter for all
eighbors to initial location

l

Determine Estimation error
for all neighboring locations

” Is
there a neighbor
location with an Estimation
error thats lower?

No Successful

- >
Diagnosis

Update guess location to the point
with the least Squared error

Figure 6.2: Extended Kalman Filter procedure for estimating unknown source
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Table 6.14: SPE for neighbor points for a converged solution
Co-ordinates of neighbor points  SPE

7.6,9 64.557
75,9 293.19
77,9 597.72
6,6,9 9761.09
8,6,9 40655.4
7,6,8 1581.80
76,10 3070.07

(5) Repeat Steps 1 through 4 until a minimum is obtained.

6.3 Results

In the first test case, a source of strength 500 mg/m3 is introduced at
(7,6,9), with an initial guess of 400 mg/m3 for the capacity at location (7,6,9) from
the sensitivity analysis. The Extended Filter converges rapidly to the final solution
(Fig. 6.4), and the SPE is only 64.557. While the solution appears to be acceptable
on inspection, our algorithm requires that the predicted errors be examined for its
neighbors. Accordingly, we run the filter for all the neighbors to (7,6,9), and confirm
from Table 6.14 that the estimate is indeed the best, given the measurement data.

In the next test case, a source of strength 1500 mg/m? was applied at loca-
tion (12.11,9), and the measurements generated were used as inputs to the sensitivity
analysis algorithm. For this test case, the sensitivity analysis points to a source lo-
cation at (12,10,8), and a capacity of 1150 mg, m3. The filter does not converge for
this location, and so we try the neighbors.

Based on the squared error results in Table 6.15, we shift our focus to
(12,10,9) since it has least error and rerun the filter for its neighbors.

In two iterations, we are able to pinpoint the correct location and source
capacity in the presence of noise. Figure 6.8 shows how the squared prediction error

converges in three iterations to its final minimum value.
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Figure 6.3: Comparing the squared estimation error across nearest-neighbors

Table 6.15: SPE for neighbor points for a converged solution-iteration 1

Co-ordinates of neighbor points SPE
13108 10545.7
11108 7719.28
1211 8 1.384 X 10°
1298 554869.0
12107 552.204

12109 157.859
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Figure 6.4: The estimation of a constant source (unknown to the model) of 500
mg/m® by the Extended Implicit Kalman Filte, with an initial guess of 400 mg/m3.

Table 6.16: SPE for neighbor points for . converged solution-iteration 2

Co-ordinates of neighbor points sum-squared error

12119 72.6206
1299 429.040
12108 233.676
12 10 10 195.053
11109 10458.9

13109 10158.0
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Figure 6.5: Unknown source capacity estimation — The first of a series of three
iterations needed for the Extended IKF to converge to its final solution. Note that
because of the wrong guess for the unknown source, the filter (wavy line) under-
predicts the actual strength of the source (straight line).
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Figure 6.6: Unknown source capacity estimat:on— The second in a series of three
iterations needed for the Extended IKF to converge to its final solution. Note that
the estimation is better in this case than it is for Iteration 1, but the filter (wavy
line) still slightly under-predicts the actual strength of the source (straight line).
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Figure 6.7: Unknown source capacity estimation— The third and final Extended
IKF iteration results showing the estimated (wavy line) and correct unknown source
(straight line) capacities for the correct guess for the unknown source location.
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If for the same case, i.e., for a source of strength 1500 mg/m?® introduced
at (12,11,9), an initial guess of 1400 mg/m3 for the capacity from the sensitivity
analysis is used, the Extended Filter converges rapidly to the final solution (Fig.
6.9), and the SPE is only 22.95. The quality of the initial guess, therefore, is very
crucial to the performance of the filter in terms of a quick convergence to the final
solution.

The Extended Filter is only as good as the model and the sensor system
are. If all the sensors are crowded in one area of the cabin, faults in other regions
can go undetected.

As an example, consider a fault at location (13,10,20). A constant source
of strength 500 mg/m? is applied over a time of 300 time steps, and the sensitivity
analysis was used to estimate the location and capacity for the unknown source.
The guess location was a significant distance away from the correct location. The
filter was then run on these measurements, assuming the correct location as the
guess location with an initial guess of 400 mg/m®. Fig. 6.10 shows the tracking
for this case, and it indicates that the response of the filter has been too slow,
and even though the filter is starting to approach the final solution, the solution
does not converge within the desired duration of time. It is therefore crucial to be
aware of ‘dead-zones’ which are outside the domain of observability and consequently,

detectability.

6.3.1 Varying functions

The Extended Filter can be applied even to varying sources. If the sources
are varying very quickly, then our assumption is violated, and therefore the solution is
likely to be oscillatory and posses a high residual error. Figure 6.11 is an example of a
varying source that was tracked by the filter.The filter exhibits oscillatory behaviour
because the unknown source function is changing rapidly and because it operates

with no knowledge about the nature of this unknown source function.
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Figure 6.9: Unknown source capacity estimation— A very good first guess can lead
to the Extended IKF rapidly converging to the correct solution.
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Figure 6.10: Unknown source capacity estimation when the fault is outside the active
observability range
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In another test case, a source function that varies more slowly is used.
Figure 6.12 shows the input and estimated source functions. The overshoot and un-
dershoot is unavoidable since the filter has no a priori knowledge about the function.

If there were any information about the nature of the source function; for
example, if a cylinder had sprung a leak, and the escape of contaminant was governed
by a certain equation, Eq. 6.9 could be modified to reflect that information, and the
filter would be modified accordingly. In the absence of any information, the current
assumption that the source remains constant or slowly varies is found to produce

satisfactory results.

6.4 Sensitivity analysis—maps

The calculation of the sensitivity coefficients, although time consuming is
crucial to obtaining a good initial guess for the location and capacity of the unknown
source. In addition, it also serves as a useful tool in determining the observability,
and consequently the fault detectability, of the system.

The system under study presents some unique features with respect to its
observability and controllability. The usual methods of determining observability
and controllability (Ramirez, 1994) fail here. In the strict sense, if the state of the
system is defined to be the concentrations at each mesh point, and if the controls
involve varying the inlet and outlet velocities and their concentrations, this system
is neither controllable nor observable. This is true for many distributed-parameter
systems, especially of the reaction-diffusion parabolic type because of the way a
perturbation propagates through the system, and for systems where the noise can
be substantial. The sensitivity matrix contains useful information about the speed
with which a perturbation travels through the system, and can be used to plot zones
of observability.

Visualization of the zones would be critical in fault detection and diagno-

sis, especially for real-time applications, so that the operator can easily ascertain the
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certainty of the diagnosis. The zone is visualized through contours of equal sensi-
tivity coefficients. Grid points that are along a constant sensitivity coefficient have
equal observability and detectability. The sensor uncertainties can then be used to
determine the lower limit of the sensitivity coefficient that can be detected. Grid
points that have Z values below the threshold cannot be detected, and lie outside
the contoured zones.

Figures (6.13-6.14) show these zones for two sample slices across the cabin.
The observable zones lie within the region bounded by the contours. The overlap
zone of the six sensors is clearly visible. Experiments also show that faults occurring
outside the zone are difficult or impossible to diagnose accurately, though an accurate
estimation of unknown sources in this zone is sometimes possible when the sensor
uncertainties are very small compared to the model uncertainty (accurate sensors).
The observability contours can also serve as an excellent tool for sensor selection and
placement because the observability contours for different sensor configurations can

be visualized in order to achieve maximum coverage of the module.

6.5 Summary and Conclusions

In this Chapter, a method for tackling a specific kind of inverse problem
was developed. Inverse problems are usually ill-posed, posses no unique solutions,
and small data errors can cause very large errors in the estimated solution to the
problem. Most inverse problems tackled in the literature are boundary-value inverse
problems, and sometimes assume a certain mathematical functional form for the
function that is to be estimated. The inverse problem that arises out of the attempt
to estimate the capacity and location of an unknown source provides the added
complication that it is not a boundary-value problem, and that fact that there is
little or no information about the nature of the source. Our solution technique
consists of a combination of two commonly used techniques, sensitivity analysis, and

Kalman filtering, which provides a very effective tool for estimating the location and
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Figure 6.14: Observability and detectability contours for slice at grid height 25 (1.7
above the floor of the cabin). The observable zone lies within the contours.
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capacity of the unknown sources. The two methods individually would be ineffective
since sensitivity analysis does not respond very well to noisy data, and Kalman
filtering is too computationally intensive to use without a good first guess for the
source location. The combination of the two methods should be further investigated
for its properties, and could possibly be extended to many applications that involve

distributed parameter systems.



Chapter 7

Concluding remarks

7.1 Original contributions

The focus of this work was to come up with implementable algorithms for
use in Space missions. This research has shown that advanced control techniques can
be readily modified for use for this real-time application. Specifically, we have shown
that the detailed modeling of the dispersion of air contaminants, their monitoring and
detection can be accomplished with reasonable computational power. Every attempt
has been made to tailor the work to NASA specifications (Technology Development
Requirements, 1996).

Among the original contributions of this work are:

Proving the inadequacy of lumped systems for air contaminant monitoring,

and the limitations of two-dimensional models.

¢ Using CFD techniques for modeling the flow aboard the Space Station, hith-

erto not attempted

¢ Development of the Extended Implicit Filter, and using it in combination

with Sensitivity analysis for joint state and parameter estimation.

¢ The use of sensitivity maps in identifying dead zones, and observable/detectable

zones aboard the Space Station.
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e Overall, providing a framework for accurate and efficient air contaminant
monitoring using algorithms and methods suited for real-time implementa-

tion, and including sensor placement decisions.

7.2 Possible applications

This research can be used as a starting point for implementing future gen-
eration air contaminant monitoring systems for the Space Station and for long range

Space missions. Some of the specific tasks that this research can be used for include:

¢ Design of habitation geometry and forced flow sources and sinks. This re-
search can be used to identify stagnation zones in the cabin, and to design

better ventilation systems to maximize crew safety and comfort.

e Sensor selection and placement issues- The sensitivity coefficients have been
shown to be an effective measure of the observability and detectability of
faults aboard the spacecraft. The visualization of the sensitivity coefficient
provides an easy tool for facilitating sensor selection in order to ensure that

all parts of the cabin are adequately covered by the measurement system.

o Analysis of proposed responses to eme ‘gencies aboard the spacecraft. The
algorithms developed here can be used to simulate possible accidents, and
study the effect of the remedial measures on the spacecraft atmosphere. For
example, one could study how long it would take for a toxic leak in one
module to spread to another module, and how long it would take for a
module to be habitable after a release ¢ ccurred and the removal devices are
activated. In addition, proposed remeliation measures for many different
kinds of accidents can be analyzed to ascertain their relative merits and

demerits.

¢ Analysis and design of fire extinguishn ent systems. The effect of fires, the

transport of combustion products, and 1 he air flow patterns in the likelihood
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of the air supply being cut off can be studied for a variety of conditions.

e Design of automated and semi-automated control systems, which use the
measurement system and model inputs to provide for operations that do not

need human intervention.

7.3 Directions for future research

Computational Fluid Dynamics (CFD) has not been adequately utilized in
Space station environmental control applications. CFD could prove to be a very
powerful tool in the design of Space station modules for crewed missions. A detailed
study of these flows is therefore in order. The next step needs to be an experimental
validation of our results under both atmospheric and micro-gravity conditions. The
validation needs to occur in two specific areas—one is to study room air flows, using
the cabin if possible, and observing how much noise is usually present in the mea-
surements, and in noting the performance of the filter itself. Tuning the gains via
sensor and model uncertainties is another area of work that needs scrutiny. Simula-
tions have shown that a proper choice of these parameters will affect filter gains, and
the consequent performance of the filter. The Implicit Kalman Filter and Extended
Filter could both be optimized to improve performance. Alternative formulations of
the filter which do not require the inversion of matrices would reduce the number of

operations needed per time step.
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Nomenclature

= State Transition Matrix (Left Hand Side)

= State Transition Matrix (Right Hand Side)

= Discrete representation of the spatial operator for the State
Transition Matrices in each of the co-ordinate directions

= Zero-mean white Gaussian processes

= Dimensionless empirical constants used in the
k — € turbulence model

= Stochastic model disturbance transition matrix

= Discrete analog of the mass or eddy diffusivity (m?s~!)

= Mass Diffusivity (m?s~1)

= Eddy Diffusivity (m2s~1)

Error m-tuple used in sens:tivity analysis

= Contaminant source capacity (kgm3s~1)

= Unknown contaminant source capacity (kgm=3s7!)

= Body force per unit mas; acting on fluid N/m

= Elements in the measurement matrix, H

= Measurement matrix

= Identity matrix

= Kinetic energy of turbulince (used in the k — ¢ model)

= Constant of integration for the unknown source capacity

= Loss function

= Implicit Kalman Gain

= Pressure of fluid Nm™2

= Predicted error covariance matrix

= Estimation error covaria:ice matrix

= Covariance matrix of the state



©n =

o~

u, U, W

Subscripts

n, p, T

Superscripts

a

4%

= Concentration of Contaminant (kgm™2) (volume %)
= Discrete analog of contaminant concentration

(kgm=3) or (volume %)

= Volumetric heat flux addition/removal to the fluid Jm™3s

= Covariance matrix (diagonal matrix) of the model noise
= Concentration vector

= Row unity matrix
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-1

= Covariance matrix (diagonal matrix) of the measurement noise

= Covariance matrix for the unknown source capacity noise
= time (s)

= Fluid temperature (K)

= Velocity vector

= Velocity components in the co-ordinate directions (ms™1)

= Stochastic model noise

= Location(s) of the unknown source(s) used in fault diagnosis

= State vector

= Estimate of State

= Estimation Error

= Co-ordinate directions or positions (m)
= Measurement signal

= Sensitivity matrix

= Mesh indices in the coordinate directions

= Augmented quantities, augmented to include unknown
source(s) in the model
= East

= West
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N = North

S = South

U = Up

D = Down

Greek Symbols

Qx, Qy, Oy = State transition matrices used in the double filter

B,y = discretization steps in the spatial directions (ADI method)
€ = Dissipation rate of the turbulence (used in the k — ¢ model)
A = Second viscosity coefficient (m?s~1)

" = Molecular Viscosity coefficient (m?s~1!)

Lt = Eddy Viscosity coefficient (m2s~1)

;7% = Error Functional

p = Density of fluid (kgm~3)

Ok, O = dimensionless empirical constants used in the turbulence model



